ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemloc GIF version

Theorem caucvgprprlemloc 6799
Description: Lemma for caucvgprpr 6808. The putative limit is located. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemloc (𝜑 → ∀𝑠Q𝑡Q (𝑠 <Q 𝑡 → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿))))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐹,𝑙,𝑟   𝑢,𝐹,𝑟   𝑞,𝑝,𝑠,𝑡   𝜑,𝑠,𝑡   𝑝,𝑙,𝑞,𝑠,𝑡,𝑟   𝑢,𝑝,𝑞,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑡,𝑘,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑡,𝑘,𝑛,𝑠,𝑞,𝑝)   𝐿(𝑢,𝑡,𝑘,𝑚,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemloc
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 6505 . . . . 5 (𝑠 <Q 𝑡 → ∃𝑦Q (𝑠 +Q 𝑦) = 𝑡)
21adantl 262 . . . 4 (((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) → ∃𝑦Q (𝑠 +Q 𝑦) = 𝑡)
3 subhalfnqq 6510 . . . . . 6 (𝑦Q → ∃𝑥Q (𝑥 +Q 𝑥) <Q 𝑦)
43ad2antrl 459 . . . . 5 ((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) → ∃𝑥Q (𝑥 +Q 𝑥) <Q 𝑦)
5 archrecnq 6759 . . . . . . 7 (𝑥Q → ∃𝑐N (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)
65ad2antrl 459 . . . . . 6 (((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → ∃𝑐N (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)
7 simpllr 486 . . . . . . . . . 10 (((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → 𝑠 <Q 𝑡)
87adantr 261 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → 𝑠 <Q 𝑡)
9 simplrl 487 . . . . . . . . . 10 (((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → 𝑦Q)
109adantr 261 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → 𝑦Q)
11 simplrr 488 . . . . . . . . . 10 (((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → (𝑠 +Q 𝑦) = 𝑡)
1211adantr 261 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → (𝑠 +Q 𝑦) = 𝑡)
13 simplrl 487 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → 𝑥Q)
14 simplrr 488 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → (𝑥 +Q 𝑥) <Q 𝑦)
15 simprl 483 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → 𝑐N)
16 simprr 484 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)
178, 10, 12, 13, 14, 15, 16caucvgprprlemloccalc 6780 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)
18 simplrl 487 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) → 𝑠Q)
1918ad3antrrr 461 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → 𝑠Q)
20 nnnq 6518 . . . . . . . . . . . . . 14 (𝑐N → [⟨𝑐, 1𝑜⟩] ~QQ)
2120ad2antrl 459 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → [⟨𝑐, 1𝑜⟩] ~QQ)
22 recclnq 6488 . . . . . . . . . . . . 13 ([⟨𝑐, 1𝑜⟩] ~QQ → (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) ∈ Q)
2321, 22syl 14 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) ∈ Q)
24 addclnq 6471 . . . . . . . . . . . 12 ((𝑠Q ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) ∈ Q) → (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) ∈ Q)
2519, 23, 24syl2anc 391 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) ∈ Q)
26 nqprlu 6643 . . . . . . . . . . 11 ((𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) ∈ Q → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ ∈ P)
2725, 26syl 14 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ ∈ P)
28 nqprlu 6643 . . . . . . . . . . 11 ((*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) ∈ Q → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
2923, 28syl 14 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
30 addclpr 6633 . . . . . . . . . 10 ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
3127, 29, 30syl2anc 391 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
32 simplrr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) → 𝑡Q)
3332ad3antrrr 461 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → 𝑡Q)
34 nqprlu 6643 . . . . . . . . . 10 (𝑡Q → ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ∈ P)
3533, 34syl 14 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ∈ P)
36 caucvgprpr.f . . . . . . . . . . . 12 (𝜑𝐹:NP)
3736ad5antr 465 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → 𝐹:NP)
3837, 15ffvelrnd 5303 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → (𝐹𝑐) ∈ P)
39 ltrelnq 6461 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
4039brel 4392 . . . . . . . . . . . . 13 ((*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥 → ((*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) ∈ Q𝑥Q))
4140simpld 105 . . . . . . . . . . . 12 ((*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥 → (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) ∈ Q)
4241ad2antll 460 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) ∈ Q)
4342, 28syl 14 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
44 addclpr 6633 . . . . . . . . . 10 (((𝐹𝑐) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
4538, 43, 44syl2anc 391 . . . . . . . . 9 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
46 ltsopr 6692 . . . . . . . . . 10 <P Or P
47 sowlin 4057 . . . . . . . . . 10 ((<P Or P ∧ ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ∈ P ∧ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P)) → ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ → ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∨ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)))
4846, 47mpan 400 . . . . . . . . 9 (((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ∈ P ∧ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P) → ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ → ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∨ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)))
4931, 35, 45, 48syl3anc 1135 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ → ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∨ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)))
5017, 49mpd 13 . . . . . . 7 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∨ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩))
5119adantr 261 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)) → 𝑠Q)
52 simplrl 487 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)) → 𝑐N)
53 simpr 103 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
54 ltaprg 6715 . . . . . . . . . . . . . 14 ((𝑓P𝑔PP) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
5554adantl 262 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)) ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
5642adantr 261 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)) → (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) ∈ Q)
5751, 56, 24syl2anc 391 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)) → (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) ∈ Q)
5857, 26syl 14 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ ∈ P)
5938adantr 261 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)) → (𝐹𝑐) ∈ P)
6056, 28syl 14 . . . . . . . . . . . . 13 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
61 addcomprg 6674 . . . . . . . . . . . . . 14 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
6261adantl 262 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
6355, 58, 59, 60, 62caovord2d 5670 . . . . . . . . . . . 12 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑐) ↔ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)))
6453, 63mpbird 156 . . . . . . . . . . 11 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑐))
65 opeq1 3549 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑐 → ⟨𝑎, 1𝑜⟩ = ⟨𝑐, 1𝑜⟩)
6665eceq1d 6142 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑐 → [⟨𝑎, 1𝑜⟩] ~Q = [⟨𝑐, 1𝑜⟩] ~Q )
6766fveq2d 5182 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑐 → (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))
6867oveq2d 5528 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑐 → (𝑠 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )))
6968breq2d 3776 . . . . . . . . . . . . . . 15 (𝑎 = 𝑐 → (𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) ↔ 𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))))
7069abbidv 2155 . . . . . . . . . . . . . 14 (𝑎 = 𝑐 → {𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))} = {𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))})
7168breq1d 3774 . . . . . . . . . . . . . . 15 (𝑎 = 𝑐 → ((𝑠 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑞 ↔ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞))
7271abbidv 2155 . . . . . . . . . . . . . 14 (𝑎 = 𝑐 → {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞})
7370, 72opeq12d 3557 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩)
74 fveq2 5178 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → (𝐹𝑎) = (𝐹𝑐))
7573, 74breq12d 3777 . . . . . . . . . . . 12 (𝑎 = 𝑐 → (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎) ↔ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑐)))
7675rspcev 2656 . . . . . . . . . . 11 ((𝑐N ∧ ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑐)) → ∃𝑎N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎))
7752, 64, 76syl2anc 391 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)) → ∃𝑎N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎))
78 caucvgprpr.lim . . . . . . . . . . 11 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
7978caucvgprprlemell 6781 . . . . . . . . . 10 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑎N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎)))
8051, 77, 79sylanbrc 394 . . . . . . . . 9 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)) → 𝑠 ∈ (1st𝐿))
8180ex 108 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) → 𝑠 ∈ (1st𝐿)))
8233adantr 261 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩) → 𝑡Q)
83 fveq2 5178 . . . . . . . . . . . . . 14 (𝑏 = 𝑐 → (𝐹𝑏) = (𝐹𝑐))
84 opeq1 3549 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑐 → ⟨𝑏, 1𝑜⟩ = ⟨𝑐, 1𝑜⟩)
8584eceq1d 6142 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑐 → [⟨𝑏, 1𝑜⟩] ~Q = [⟨𝑐, 1𝑜⟩] ~Q )
8685fveq2d 5182 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑐 → (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))
8786breq2d 3776 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑐 → (𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )))
8887abbidv 2155 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → {𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )})
8986breq1d 3774 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑐 → ((*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞))
9089abbidv 2155 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞})
9188, 90opeq12d 3557 . . . . . . . . . . . . . 14 (𝑏 = 𝑐 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)
9283, 91oveq12d 5530 . . . . . . . . . . . . 13 (𝑏 = 𝑐 → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
9392breq1d 3774 . . . . . . . . . . . 12 (𝑏 = 𝑐 → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ↔ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩))
9493rspcev 2656 . . . . . . . . . . 11 ((𝑐N ∧ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩) → ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)
9515, 94sylan 267 . . . . . . . . . 10 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩) → ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)
9678caucvgprprlemelu 6782 . . . . . . . . . 10 (𝑡 ∈ (2nd𝐿) ↔ (𝑡Q ∧ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩))
9782, 95, 96sylanbrc 394 . . . . . . . . 9 (((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) ∧ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩) → 𝑡 ∈ (2nd𝐿))
9897ex 108 . . . . . . . 8 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → (((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ → 𝑡 ∈ (2nd𝐿)))
9981, 98orim12d 700 . . . . . . 7 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → (((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )) <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∨ ((𝐹𝑐) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑐, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩) → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿))))
10050, 99mpd 13 . . . . . 6 ((((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) ∧ (𝑐N ∧ (*Q‘[⟨𝑐, 1𝑜⟩] ~Q ) <Q 𝑥)) → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿)))
1016, 100rexlimddv 2437 . . . . 5 (((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) <Q 𝑦)) → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿)))
1024, 101rexlimddv 2437 . . . 4 ((((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) ∧ (𝑦Q ∧ (𝑠 +Q 𝑦) = 𝑡)) → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿)))
1032, 102rexlimddv 2437 . . 3 (((𝜑 ∧ (𝑠Q𝑡Q)) ∧ 𝑠 <Q 𝑡) → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿)))
104103ex 108 . 2 ((𝜑 ∧ (𝑠Q𝑡Q)) → (𝑠 <Q 𝑡 → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿))))
105104ralrimivva 2401 1 (𝜑 → ∀𝑠Q𝑡Q (𝑠 <Q 𝑡 → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wo 629  w3a 885   = wceq 1243  wcel 1393  {cab 2026  wral 2306  wrex 2307  {crab 2310  cop 3378   class class class wbr 3764   Or wor 4032  wf 4898  cfv 4902  (class class class)co 5512  1st c1st 5765  2nd c2nd 5766  1𝑜c1o 5994  [cec 6104  Ncnpi 6368   <N clti 6371   ~Q ceq 6375  Qcnq 6376   +Q cplq 6378  *Qcrq 6380   <Q cltq 6381  Pcnp 6387   +P cpp 6389  <P cltp 6391
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6400  df-pli 6401  df-mi 6402  df-lti 6403  df-plpq 6440  df-mpq 6441  df-enq 6443  df-nqqs 6444  df-plqqs 6445  df-mqqs 6446  df-1nqqs 6447  df-rq 6448  df-ltnqqs 6449  df-enq0 6520  df-nq0 6521  df-0nq0 6522  df-plq0 6523  df-mq0 6524  df-inp 6562  df-iplp 6564  df-iltp 6566
This theorem is referenced by:  caucvgprprlemcl  6800
  Copyright terms: Public domain W3C validator