ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemnkeqj GIF version

Theorem caucvgprprlemnkeqj 7491
Description: Lemma for caucvgprpr 7513. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprprlemnkj.k (𝜑𝐾N)
caucvgprprlemnkj.j (𝜑𝐽N)
caucvgprprlemnkj.s (𝜑𝑆Q)
Assertion
Ref Expression
caucvgprprlemnkeqj ((𝜑𝐾 = 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
Distinct variable groups:   𝑘,𝐹,𝑛   𝐽,𝑝,𝑞   𝐾,𝑝,𝑞   𝑆,𝑝,𝑞
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝑆(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑞,𝑝,𝑙)   𝐽(𝑢,𝑘,𝑛,𝑙)   𝐾(𝑢,𝑘,𝑛,𝑙)

Proof of Theorem caucvgprprlemnkeqj
StepHypRef Expression
1 ltsopr 7397 . . . 4 <P Or P
2 ltrelpr 7306 . . . 4 <P ⊆ (P × P)
31, 2son2lpi 4930 . . 3 ¬ ((𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∧ ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽))
4 caucvgprpr.f . . . . . . . . 9 (𝜑𝐹:NP)
5 caucvgprprlemnkj.j . . . . . . . . 9 (𝜑𝐽N)
64, 5ffvelrnd 5549 . . . . . . . 8 (𝜑 → (𝐹𝐽) ∈ P)
76ad2antrr 479 . . . . . . 7 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (𝐹𝐽) ∈ P)
85adantr 274 . . . . . . . . . . 11 ((𝜑𝐾 = 𝐽) → 𝐽N)
9 nnnq 7223 . . . . . . . . . . 11 (𝐽N → [⟨𝐽, 1o⟩] ~QQ)
108, 9syl 14 . . . . . . . . . 10 ((𝜑𝐾 = 𝐽) → [⟨𝐽, 1o⟩] ~QQ)
11 recclnq 7193 . . . . . . . . . 10 ([⟨𝐽, 1o⟩] ~QQ → (*Q‘[⟨𝐽, 1o⟩] ~Q ) ∈ Q)
1210, 11syl 14 . . . . . . . . 9 ((𝜑𝐾 = 𝐽) → (*Q‘[⟨𝐽, 1o⟩] ~Q ) ∈ Q)
13 nqprlu 7348 . . . . . . . . 9 ((*Q‘[⟨𝐽, 1o⟩] ~Q ) ∈ Q → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
1412, 13syl 14 . . . . . . . 8 ((𝜑𝐾 = 𝐽) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
1514adantr 274 . . . . . . 7 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
16 ltaddpr 7398 . . . . . . 7 (((𝐹𝐽) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → (𝐹𝐽)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
177, 15, 16syl2anc 408 . . . . . 6 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (𝐹𝐽)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
18 simprr 521 . . . . . 6 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)
191, 2sotri 4929 . . . . . 6 (((𝐹𝐽)<P ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩) → (𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)
2017, 18, 19syl2anc 408 . . . . 5 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)
21 caucvgprprlemnkj.s . . . . . . . . . 10 (𝜑𝑆Q)
2221adantr 274 . . . . . . . . 9 ((𝜑𝐾 = 𝐽) → 𝑆Q)
23 nqprlu 7348 . . . . . . . . 9 (𝑆Q → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∈ P)
2422, 23syl 14 . . . . . . . 8 ((𝜑𝐾 = 𝐽) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∈ P)
25 ltaddpr 7398 . . . . . . . 8 ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
2624, 14, 25syl2anc 408 . . . . . . 7 ((𝜑𝐾 = 𝐽) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
2726adantr 274 . . . . . 6 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
28 simprl 520 . . . . . . 7 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽))
29 addnqpr 7362 . . . . . . . . . 10 ((𝑆Q ∧ (*Q‘[⟨𝐽, 1o⟩] ~Q ) ∈ Q) → ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩ = (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
3022, 12, 29syl2anc 408 . . . . . . . . 9 ((𝜑𝐾 = 𝐽) → ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩ = (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩))
3130breq1d 3934 . . . . . . . 8 ((𝜑𝐾 = 𝐽) → (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ↔ (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
3231adantr 274 . . . . . . 7 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ↔ (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)))
3328, 32mpbid 146 . . . . . 6 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽))
341, 2sotri 4929 . . . . . 6 ((⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩) ∧ (⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P (𝐹𝐽)) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽))
3527, 33, 34syl2anc 408 . . . . 5 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽))
3620, 35jca 304 . . . 4 (((𝜑𝐾 = 𝐽) ∧ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)) → ((𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∧ ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽)))
3736ex 114 . . 3 ((𝜑𝐾 = 𝐽) → ((⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩) → ((𝐹𝐽)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩ ∧ ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩<P (𝐹𝐽))))
383, 37mtoi 653 . 2 ((𝜑𝐾 = 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
39 opeq1 3700 . . . . . . . . . . 11 (𝐾 = 𝐽 → ⟨𝐾, 1o⟩ = ⟨𝐽, 1o⟩)
4039eceq1d 6458 . . . . . . . . . 10 (𝐾 = 𝐽 → [⟨𝐾, 1o⟩] ~Q = [⟨𝐽, 1o⟩] ~Q )
4140fveq2d 5418 . . . . . . . . 9 (𝐾 = 𝐽 → (*Q‘[⟨𝐾, 1o⟩] ~Q ) = (*Q‘[⟨𝐽, 1o⟩] ~Q ))
4241oveq2d 5783 . . . . . . . 8 (𝐾 = 𝐽 → (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) = (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )))
4342breq2d 3936 . . . . . . 7 (𝐾 = 𝐽 → (𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))))
4443abbidv 2255 . . . . . 6 (𝐾 = 𝐽 → {𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))})
4542breq1d 3934 . . . . . . 7 (𝐾 = 𝐽 → ((𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞))
4645abbidv 2255 . . . . . 6 (𝐾 = 𝐽 → {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞})
4744, 46opeq12d 3708 . . . . 5 (𝐾 = 𝐽 → ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩)
48 fveq2 5414 . . . . 5 (𝐾 = 𝐽 → (𝐹𝐾) = (𝐹𝐽))
4947, 48breq12d 3937 . . . 4 (𝐾 = 𝐽 → (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ↔ ⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽)))
5049anbi1d 460 . . 3 (𝐾 = 𝐽 → ((⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩) ↔ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)))
5150adantl 275 . 2 ((𝜑𝐾 = 𝐽) → ((⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩) ↔ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐽) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩)))
5238, 51mtbird 662 1 ((𝜑𝐾 = 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  {cab 2123  wral 2414  cop 3525   class class class wbr 3924  wf 5114  cfv 5118  (class class class)co 5767  1oc1o 6299  [cec 6420  Ncnpi 7073   <N clti 7076   ~Q ceq 7080  Qcnq 7081   +Q cplq 7083  *Qcrq 7085   <Q cltq 7086  Pcnp 7092   +P cpp 7094  <P cltp 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-2o 6307  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-enq0 7225  df-nq0 7226  df-0nq0 7227  df-plq0 7228  df-mq0 7229  df-inp 7267  df-iplp 7269  df-iltp 7271
This theorem is referenced by:  caucvgprprlemnkj  7493
  Copyright terms: Public domain W3C validator