ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemval GIF version

Theorem caucvgprprlemval 6843
Description: Lemma for caucvgprpr 6867. Cauchy condition expressed in terms of classes. (Contributed by Jim Kingdon, 3-Mar-2021.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
Assertion
Ref Expression
caucvgprprlemval ((𝜑𝐴 <N 𝐵) → ((𝐹𝐴)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∧ (𝐹𝐵)<P ((𝐹𝐴) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)))
Distinct variable groups:   𝐴,𝑙   𝑢,𝐴   𝐴,𝑝,𝑙   𝐴,𝑞,𝑢   𝑘,𝐹,𝑛   𝑘,𝑙,𝑛   𝑢,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑛)   𝐵(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝐹(𝑢,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpi 6479 . . . . 5 <N ⊆ (N × N)
21brel 4419 . . . 4 (𝐴 <N 𝐵 → (𝐴N𝐵N))
32adantl 266 . . 3 ((𝜑𝐴 <N 𝐵) → (𝐴N𝐵N))
4 caucvgprpr.f . . . . 5 (𝜑𝐹:NP)
5 caucvgprpr.cau . . . . 5 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
64, 5caucvgprprlemcbv 6842 . . . 4 (𝜑 → ∀𝑎N𝑏N (𝑎 <N 𝑏 → ((𝐹𝑎)<P ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑏)<P ((𝐹𝑎) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
76adantr 265 . . 3 ((𝜑𝐴 <N 𝐵) → ∀𝑎N𝑏N (𝑎 <N 𝑏 → ((𝐹𝑎)<P ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑏)<P ((𝐹𝑎) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
8 simpr 107 . . 3 ((𝜑𝐴 <N 𝐵) → 𝐴 <N 𝐵)
9 breq1 3794 . . . . 5 (𝑎 = 𝐴 → (𝑎 <N 𝑏𝐴 <N 𝑏))
10 fveq2 5205 . . . . . . 7 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
11 opeq1 3576 . . . . . . . . . . . . 13 (𝑎 = 𝐴 → ⟨𝑎, 1𝑜⟩ = ⟨𝐴, 1𝑜⟩)
1211eceq1d 6172 . . . . . . . . . . . 12 (𝑎 = 𝐴 → [⟨𝑎, 1𝑜⟩] ~Q = [⟨𝐴, 1𝑜⟩] ~Q )
1312fveq2d 5209 . . . . . . . . . . 11 (𝑎 = 𝐴 → (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ))
1413breq2d 3803 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑙 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) ↔ 𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )))
1514abbidv 2171 . . . . . . . . 9 (𝑎 = 𝐴 → {𝑙𝑙 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )} = {𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )})
1613breq1d 3801 . . . . . . . . . 10 (𝑎 = 𝐴 → ((*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑢 ↔ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢))
1716abbidv 2171 . . . . . . . . 9 (𝑎 = 𝐴 → {𝑢 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑢} = {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢})
1815, 17opeq12d 3584 . . . . . . . 8 (𝑎 = 𝐴 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)
1918oveq2d 5555 . . . . . . 7 (𝑎 = 𝐴 → ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) = ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))
2010, 19breq12d 3804 . . . . . 6 (𝑎 = 𝐴 → ((𝐹𝑎)<P ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ↔ (𝐹𝐴)<P ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)))
2110, 18oveq12d 5557 . . . . . . 7 (𝑎 = 𝐴 → ((𝐹𝑎) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) = ((𝐹𝐴) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))
2221breq2d 3803 . . . . . 6 (𝑎 = 𝐴 → ((𝐹𝑏)<P ((𝐹𝑎) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ↔ (𝐹𝑏)<P ((𝐹𝐴) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)))
2320, 22anbi12d 450 . . . . 5 (𝑎 = 𝐴 → (((𝐹𝑎)<P ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑏)<P ((𝐹𝑎) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ↔ ((𝐹𝐴)<P ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑏)<P ((𝐹𝐴) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
249, 23imbi12d 227 . . . 4 (𝑎 = 𝐴 → ((𝑎 <N 𝑏 → ((𝐹𝑎)<P ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑏)<P ((𝐹𝑎) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))) ↔ (𝐴 <N 𝑏 → ((𝐹𝐴)<P ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑏)<P ((𝐹𝐴) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)))))
25 breq2 3795 . . . . 5 (𝑏 = 𝐵 → (𝐴 <N 𝑏𝐴 <N 𝐵))
26 fveq2 5205 . . . . . . . 8 (𝑏 = 𝐵 → (𝐹𝑏) = (𝐹𝐵))
2726oveq1d 5554 . . . . . . 7 (𝑏 = 𝐵 → ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) = ((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))
2827breq2d 3803 . . . . . 6 (𝑏 = 𝐵 → ((𝐹𝐴)<P ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ↔ (𝐹𝐴)<P ((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)))
2926breq1d 3801 . . . . . 6 (𝑏 = 𝐵 → ((𝐹𝑏)<P ((𝐹𝐴) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ↔ (𝐹𝐵)<P ((𝐹𝐴) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)))
3028, 29anbi12d 450 . . . . 5 (𝑏 = 𝐵 → (((𝐹𝐴)<P ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑏)<P ((𝐹𝐴) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ↔ ((𝐹𝐴)<P ((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝐵)<P ((𝐹𝐴) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
3125, 30imbi12d 227 . . . 4 (𝑏 = 𝐵 → ((𝐴 <N 𝑏 → ((𝐹𝐴)<P ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑏)<P ((𝐹𝐴) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))) ↔ (𝐴 <N 𝐵 → ((𝐹𝐴)<P ((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝐵)<P ((𝐹𝐴) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)))))
3224, 31rspc2v 2684 . . 3 ((𝐴N𝐵N) → (∀𝑎N𝑏N (𝑎 <N 𝑏 → ((𝐹𝑎)<P ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑏)<P ((𝐹𝑎) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))) → (𝐴 <N 𝐵 → ((𝐹𝐴)<P ((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝐵)<P ((𝐹𝐴) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)))))
333, 7, 8, 32syl3c 61 . 2 ((𝜑𝐴 <N 𝐵) → ((𝐹𝐴)<P ((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝐵)<P ((𝐹𝐴) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)))
34 breq1 3794 . . . . . . 7 (𝑙 = 𝑝 → (𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )))
3534cbvabv 2177 . . . . . 6 {𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}
36 breq2 3795 . . . . . . 7 (𝑢 = 𝑞 → ((*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢 ↔ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑞))
3736cbvabv 2177 . . . . . 6 {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢} = {𝑞 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑞}
3835, 37opeq12i 3581 . . . . 5 ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑞}⟩
3938oveq2i 5550 . . . 4 ((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) = ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)
4039breq2i 3799 . . 3 ((𝐹𝐴)<P ((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ↔ (𝐹𝐴)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
4138oveq2i 5550 . . . 4 ((𝐹𝐴) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) = ((𝐹𝐴) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)
4241breq2i 3799 . . 3 ((𝐹𝐵)<P ((𝐹𝐴) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ↔ (𝐹𝐵)<P ((𝐹𝐴) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
4340, 42anbi12i 441 . 2 (((𝐹𝐴)<P ((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝐵)<P ((𝐹𝐴) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ↔ ((𝐹𝐴)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∧ (𝐹𝐵)<P ((𝐹𝐴) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)))
4433, 43sylib 131 1 ((𝜑𝐴 <N 𝐵) → ((𝐹𝐴)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∧ (𝐹𝐵)<P ((𝐹𝐴) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  {cab 2042  wral 2323  cop 3405   class class class wbr 3791  wf 4925  cfv 4929  (class class class)co 5539  1𝑜c1o 6024  [cec 6134  Ncnpi 6427   <N clti 6430   ~Q ceq 6434  *Qcrq 6439   <Q cltq 6440  Pcnp 6446   +P cpp 6448  <P cltp 6450
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-xp 4378  df-cnv 4380  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fv 4937  df-ov 5542  df-ec 6138  df-lti 6462
This theorem is referenced by:  caucvgprprlemnkltj  6844  caucvgprprlemnjltk  6846  caucvgprprlemnbj  6848
  Copyright terms: Public domain W3C validator