ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsr GIF version

Theorem caucvgsr 7610
Description: A Cauchy sequence of signed reals with a modulus of convergence converges to a signed real. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

This is similar to caucvgprpr 7520 but is for signed reals rather than positive reals.

Here is an outline of how we prove it:

1. Choose a lower bound for the sequence (see caucvgsrlembnd 7609).

2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7605).

3. Since a signed real (element of R) which is greater than zero can be mapped to a positive real (element of P), perform that mapping on each element of the sequence and invoke caucvgprpr 7520 to get a limit (see caucvgsrlemgt1 7603).

4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7603).

5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7608). (Contributed by Jim Kingdon, 20-Jun-2021.)

Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
Assertion
Ref Expression
caucvgsr (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
Distinct variable groups:   𝑗,𝐹,𝑘,𝑙,𝑢   𝑛,𝐹,𝑘,𝑙,𝑢   𝑥,𝐹,𝑦,𝑗,𝑘   𝜑,𝑗,𝑘,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑙)

Proof of Theorem caucvgsr
Dummy variables 𝑓 𝑔 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgsr.f . 2 (𝜑𝐹:NR)
2 caucvgsr.cau . 2 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
3 breq1 3932 . . . . . . . . . . . . 13 (𝑛 = 1o → (𝑛 <N 𝑘 ↔ 1o <N 𝑘))
4 fveq2 5421 . . . . . . . . . . . . . . 15 (𝑛 = 1o → (𝐹𝑛) = (𝐹‘1o))
5 opeq1 3705 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 1o → ⟨𝑛, 1o⟩ = ⟨1o, 1o⟩)
65eceq1d 6465 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 1o → [⟨𝑛, 1o⟩] ~Q = [⟨1o, 1o⟩] ~Q )
76fveq2d 5425 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 1o → (*Q‘[⟨𝑛, 1o⟩] ~Q ) = (*Q‘[⟨1o, 1o⟩] ~Q ))
87breq2d 3941 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 1o → (𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q ) ↔ 𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )))
98abbidv 2257 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1o → {𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )} = {𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )})
107breq1d 3939 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 1o → ((*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢 ↔ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢))
1110abbidv 2257 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 1o → {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢} = {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢})
129, 11opeq12d 3713 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 1o → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩)
1312oveq1d 5789 . . . . . . . . . . . . . . . . . 18 (𝑛 = 1o → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P))
1413opeq1d 3711 . . . . . . . . . . . . . . . . 17 (𝑛 = 1o → ⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩)
1514eceq1d 6465 . . . . . . . . . . . . . . . 16 (𝑛 = 1o → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
1615oveq2d 5790 . . . . . . . . . . . . . . 15 (𝑛 = 1o → ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) = ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
174, 16breq12d 3942 . . . . . . . . . . . . . 14 (𝑛 = 1o → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ↔ (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
184, 15oveq12d 5792 . . . . . . . . . . . . . . 15 (𝑛 = 1o → ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) = ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
1918breq2d 3941 . . . . . . . . . . . . . 14 (𝑛 = 1o → ((𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ↔ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
2017, 19anbi12d 464 . . . . . . . . . . . . 13 (𝑛 = 1o → (((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) ↔ ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
213, 20imbi12d 233 . . . . . . . . . . . 12 (𝑛 = 1o → ((𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) ↔ (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))))
2221ralbidv 2437 . . . . . . . . . . 11 (𝑛 = 1o → (∀𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) ↔ ∀𝑘N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))))
23 1pi 7123 . . . . . . . . . . . 12 1oN
2423a1i 9 . . . . . . . . . . 11 (𝜑 → 1oN)
2522, 2, 24rspcdva 2794 . . . . . . . . . 10 (𝜑 → ∀𝑘N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
26 simpl 108 . . . . . . . . . . . 12 (((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) → (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
2726imim2i 12 . . . . . . . . . . 11 ((1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) → (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
2827ralimi 2495 . . . . . . . . . 10 (∀𝑘N (1o <N 𝑘 → ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹‘1o) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))) → ∀𝑘N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
2925, 28syl 14 . . . . . . . . 9 (𝜑 → ∀𝑘N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
30 breq2 3933 . . . . . . . . . . 11 (𝑘 = 𝑚 → (1o <N 𝑘 ↔ 1o <N 𝑚))
31 fveq2 5421 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
3231oveq1d 5789 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) = ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))
3332breq2d 3941 . . . . . . . . . . 11 (𝑘 = 𝑚 → ((𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ↔ (𝐹‘1o) <R ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
3430, 33imbi12d 233 . . . . . . . . . 10 (𝑘 = 𝑚 → ((1o <N 𝑘 → (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) ↔ (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
3534rspcv 2785 . . . . . . . . 9 (𝑚N → (∀𝑘N (1o <N 𝑘 → (𝐹‘1o) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
3629, 35mpan9 279 . . . . . . . 8 ((𝜑𝑚N) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))
37 df-1nqqs 7159 . . . . . . . . . . . . . . . . . . . 20 1Q = [⟨1o, 1o⟩] ~Q
3837fveq2i 5424 . . . . . . . . . . . . . . . . . . 19 (*Q‘1Q) = (*Q‘[⟨1o, 1o⟩] ~Q )
39 rec1nq 7203 . . . . . . . . . . . . . . . . . . 19 (*Q‘1Q) = 1Q
4038, 39eqtr3i 2162 . . . . . . . . . . . . . . . . . 18 (*Q‘[⟨1o, 1o⟩] ~Q ) = 1Q
4140breq2i 3937 . . . . . . . . . . . . . . . . 17 (𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q ) ↔ 𝑙 <Q 1Q)
4241abbii 2255 . . . . . . . . . . . . . . . 16 {𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )} = {𝑙𝑙 <Q 1Q}
4340breq1i 3936 . . . . . . . . . . . . . . . . 17 ((*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢 ↔ 1Q <Q 𝑢)
4443abbii 2255 . . . . . . . . . . . . . . . 16 {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢} = {𝑢 ∣ 1Q <Q 𝑢}
4542, 44opeq12i 3710 . . . . . . . . . . . . . . 15 ⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
46 df-i1p 7275 . . . . . . . . . . . . . . 15 1P = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
4745, 46eqtr4i 2163 . . . . . . . . . . . . . 14 ⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ = 1P
4847oveq1i 5784 . . . . . . . . . . . . 13 (⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P) = (1P +P 1P)
4948opeq1i 3708 . . . . . . . . . . . 12 ⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(1P +P 1P), 1P
50 eceq1 6464 . . . . . . . . . . . 12 (⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(1P +P 1P), 1P⟩ → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R )
5149, 50ax-mp 5 . . . . . . . . . . 11 [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R
52 df-1r 7540 . . . . . . . . . . 11 1R = [⟨(1P +P 1P), 1P⟩] ~R
5351, 52eqtr4i 2163 . . . . . . . . . 10 [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = 1R
5453oveq2i 5785 . . . . . . . . 9 ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) = ((𝐹𝑚) +R 1R)
5554breq2i 3937 . . . . . . . 8 ((𝐹‘1o) <R ((𝐹𝑚) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ↔ (𝐹‘1o) <R ((𝐹𝑚) +R 1R))
5636, 55syl6ib 160 . . . . . . 7 ((𝜑𝑚N) → (1o <N 𝑚 → (𝐹‘1o) <R ((𝐹𝑚) +R 1R)))
5756imp 123 . . . . . 6 (((𝜑𝑚N) ∧ 1o <N 𝑚) → (𝐹‘1o) <R ((𝐹𝑚) +R 1R))
581adantr 274 . . . . . . . . . 10 ((𝜑𝑚N) → 𝐹:NR)
5923a1i 9 . . . . . . . . . 10 ((𝜑𝑚N) → 1oN)
6058, 59ffvelrnd 5556 . . . . . . . . 9 ((𝜑𝑚N) → (𝐹‘1o) ∈ R)
61 ltadd1sr 7584 . . . . . . . . 9 ((𝐹‘1o) ∈ R → (𝐹‘1o) <R ((𝐹‘1o) +R 1R))
6260, 61syl 14 . . . . . . . 8 ((𝜑𝑚N) → (𝐹‘1o) <R ((𝐹‘1o) +R 1R))
6362adantr 274 . . . . . . 7 (((𝜑𝑚N) ∧ 1o = 𝑚) → (𝐹‘1o) <R ((𝐹‘1o) +R 1R))
64 fveq2 5421 . . . . . . . . 9 (1o = 𝑚 → (𝐹‘1o) = (𝐹𝑚))
6564oveq1d 5789 . . . . . . . 8 (1o = 𝑚 → ((𝐹‘1o) +R 1R) = ((𝐹𝑚) +R 1R))
6665adantl 275 . . . . . . 7 (((𝜑𝑚N) ∧ 1o = 𝑚) → ((𝐹‘1o) +R 1R) = ((𝐹𝑚) +R 1R))
6763, 66breqtrd 3954 . . . . . 6 (((𝜑𝑚N) ∧ 1o = 𝑚) → (𝐹‘1o) <R ((𝐹𝑚) +R 1R))
68 nlt1pig 7149 . . . . . . . . 9 (𝑚N → ¬ 𝑚 <N 1o)
6968adantl 275 . . . . . . . 8 ((𝜑𝑚N) → ¬ 𝑚 <N 1o)
7069pm2.21d 608 . . . . . . 7 ((𝜑𝑚N) → (𝑚 <N 1o → (𝐹‘1o) <R ((𝐹𝑚) +R 1R)))
7170imp 123 . . . . . 6 (((𝜑𝑚N) ∧ 𝑚 <N 1o) → (𝐹‘1o) <R ((𝐹𝑚) +R 1R))
72 pitri3or 7130 . . . . . . . 8 ((1oN𝑚N) → (1o <N 𝑚 ∨ 1o = 𝑚𝑚 <N 1o))
7323, 72mpan 420 . . . . . . 7 (𝑚N → (1o <N 𝑚 ∨ 1o = 𝑚𝑚 <N 1o))
7473adantl 275 . . . . . 6 ((𝜑𝑚N) → (1o <N 𝑚 ∨ 1o = 𝑚𝑚 <N 1o))
7557, 67, 71, 74mpjao3dan 1285 . . . . 5 ((𝜑𝑚N) → (𝐹‘1o) <R ((𝐹𝑚) +R 1R))
76 ltasrg 7578 . . . . . . 7 ((𝑓R𝑔RR) → (𝑓 <R 𝑔 ↔ ( +R 𝑓) <R ( +R 𝑔)))
7776adantl 275 . . . . . 6 (((𝜑𝑚N) ∧ (𝑓R𝑔RR)) → (𝑓 <R 𝑔 ↔ ( +R 𝑓) <R ( +R 𝑔)))
781ffvelrnda 5555 . . . . . . 7 ((𝜑𝑚N) → (𝐹𝑚) ∈ R)
79 1sr 7559 . . . . . . 7 1RR
80 addclsr 7561 . . . . . . 7 (((𝐹𝑚) ∈ R ∧ 1RR) → ((𝐹𝑚) +R 1R) ∈ R)
8178, 79, 80sylancl 409 . . . . . 6 ((𝜑𝑚N) → ((𝐹𝑚) +R 1R) ∈ R)
82 m1r 7560 . . . . . . 7 -1RR
8382a1i 9 . . . . . 6 ((𝜑𝑚N) → -1RR)
84 addcomsrg 7563 . . . . . . 7 ((𝑓R𝑔R) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
8584adantl 275 . . . . . 6 (((𝜑𝑚N) ∧ (𝑓R𝑔R)) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
8677, 60, 81, 83, 85caovord2d 5940 . . . . 5 ((𝜑𝑚N) → ((𝐹‘1o) <R ((𝐹𝑚) +R 1R) ↔ ((𝐹‘1o) +R -1R) <R (((𝐹𝑚) +R 1R) +R -1R)))
8775, 86mpbid 146 . . . 4 ((𝜑𝑚N) → ((𝐹‘1o) +R -1R) <R (((𝐹𝑚) +R 1R) +R -1R))
8879a1i 9 . . . . . 6 ((𝜑𝑚N) → 1RR)
89 addasssrg 7564 . . . . . 6 (((𝐹𝑚) ∈ R ∧ 1RR ∧ -1RR) → (((𝐹𝑚) +R 1R) +R -1R) = ((𝐹𝑚) +R (1R +R -1R)))
9078, 88, 83, 89syl3anc 1216 . . . . 5 ((𝜑𝑚N) → (((𝐹𝑚) +R 1R) +R -1R) = ((𝐹𝑚) +R (1R +R -1R)))
91 addcomsrg 7563 . . . . . . . . 9 ((1RR ∧ -1RR) → (1R +R -1R) = (-1R +R 1R))
9279, 82, 91mp2an 422 . . . . . . . 8 (1R +R -1R) = (-1R +R 1R)
93 m1p1sr 7568 . . . . . . . 8 (-1R +R 1R) = 0R
9492, 93eqtri 2160 . . . . . . 7 (1R +R -1R) = 0R
9594oveq2i 5785 . . . . . 6 ((𝐹𝑚) +R (1R +R -1R)) = ((𝐹𝑚) +R 0R)
96 0idsr 7575 . . . . . . 7 ((𝐹𝑚) ∈ R → ((𝐹𝑚) +R 0R) = (𝐹𝑚))
9778, 96syl 14 . . . . . 6 ((𝜑𝑚N) → ((𝐹𝑚) +R 0R) = (𝐹𝑚))
9895, 97syl5eq 2184 . . . . 5 ((𝜑𝑚N) → ((𝐹𝑚) +R (1R +R -1R)) = (𝐹𝑚))
9990, 98eqtrd 2172 . . . 4 ((𝜑𝑚N) → (((𝐹𝑚) +R 1R) +R -1R) = (𝐹𝑚))
10087, 99breqtrd 3954 . . 3 ((𝜑𝑚N) → ((𝐹‘1o) +R -1R) <R (𝐹𝑚))
101100ralrimiva 2505 . 2 (𝜑 → ∀𝑚N ((𝐹‘1o) +R -1R) <R (𝐹𝑚))
1021, 2, 101caucvgsrlembnd 7609 1 (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 961  w3a 962   = wceq 1331  wcel 1480  {cab 2125  wral 2416  wrex 2417  cop 3530   class class class wbr 3929  wf 5119  cfv 5123  (class class class)co 5774  1oc1o 6306  [cec 6427  Ncnpi 7080   <N clti 7083   ~Q ceq 7087  1Qc1q 7089  *Qcrq 7092   <Q cltq 7093  1Pc1p 7100   +P cpp 7101   ~R cer 7104  Rcnr 7105  0Rc0r 7106  1Rc1r 7107  -1Rcm1r 7108   +R cplr 7109   <R cltr 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-i1p 7275  df-iplp 7276  df-imp 7277  df-iltp 7278  df-enr 7534  df-nr 7535  df-plr 7536  df-mr 7537  df-ltr 7538  df-0r 7539  df-1r 7540  df-m1r 7541
This theorem is referenced by:  axcaucvglemres  7707
  Copyright terms: Public domain W3C validator