ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlembound GIF version

Theorem caucvgsrlembound 6936
Description: Lemma for caucvgsr 6944. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlemgt1.gt1 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
caucvgsrlemf.xfr 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
Assertion
Ref Expression
caucvgsrlembound (𝜑 → ∀𝑚N 1P<P (𝐺𝑚))
Distinct variable groups:   𝑚,𝐹,𝑥,𝑦   𝜑,𝑥   𝑚,𝐺
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑘,𝑚,𝑛,𝑙)   𝐹(𝑢,𝑘,𝑛,𝑙)   𝐺(𝑥,𝑦,𝑢,𝑘,𝑛,𝑙)

Proof of Theorem caucvgsrlembound
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caucvgsrlemgt1.gt1 . . . . . . 7 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
2 fveq2 5206 . . . . . . . . 9 (𝑚 = 𝑤 → (𝐹𝑚) = (𝐹𝑤))
32breq2d 3804 . . . . . . . 8 (𝑚 = 𝑤 → (1R <R (𝐹𝑚) ↔ 1R <R (𝐹𝑤)))
43cbvralv 2550 . . . . . . 7 (∀𝑚N 1R <R (𝐹𝑚) ↔ ∀𝑤N 1R <R (𝐹𝑤))
51, 4sylib 131 . . . . . 6 (𝜑 → ∀𝑤N 1R <R (𝐹𝑤))
65r19.21bi 2424 . . . . 5 ((𝜑𝑤N) → 1R <R (𝐹𝑤))
7 df-1r 6875 . . . . . . 7 1R = [⟨(1P +P 1P), 1P⟩] ~R
87eqcomi 2060 . . . . . 6 [⟨(1P +P 1P), 1P⟩] ~R = 1R
98a1i 9 . . . . 5 ((𝜑𝑤N) → [⟨(1P +P 1P), 1P⟩] ~R = 1R)
10 caucvgsr.f . . . . . 6 (𝜑𝐹:NR)
11 caucvgsr.cau . . . . . 6 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
12 caucvgsrlemf.xfr . . . . . 6 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
1310, 11, 1, 12caucvgsrlemfv 6933 . . . . 5 ((𝜑𝑤N) → [⟨((𝐺𝑤) +P 1P), 1P⟩] ~R = (𝐹𝑤))
146, 9, 133brtr4d 3822 . . . 4 ((𝜑𝑤N) → [⟨(1P +P 1P), 1P⟩] ~R <R [⟨((𝐺𝑤) +P 1P), 1P⟩] ~R )
15 1pr 6710 . . . . 5 1PP
1610, 11, 1, 12caucvgsrlemf 6934 . . . . . 6 (𝜑𝐺:NP)
1716ffvelrnda 5330 . . . . 5 ((𝜑𝑤N) → (𝐺𝑤) ∈ P)
18 prsrlt 6929 . . . . 5 ((1PP ∧ (𝐺𝑤) ∈ P) → (1P<P (𝐺𝑤) ↔ [⟨(1P +P 1P), 1P⟩] ~R <R [⟨((𝐺𝑤) +P 1P), 1P⟩] ~R ))
1915, 17, 18sylancr 399 . . . 4 ((𝜑𝑤N) → (1P<P (𝐺𝑤) ↔ [⟨(1P +P 1P), 1P⟩] ~R <R [⟨((𝐺𝑤) +P 1P), 1P⟩] ~R ))
2014, 19mpbird 160 . . 3 ((𝜑𝑤N) → 1P<P (𝐺𝑤))
2120ralrimiva 2409 . 2 (𝜑 → ∀𝑤N 1P<P (𝐺𝑤))
22 fveq2 5206 . . . 4 (𝑤 = 𝑚 → (𝐺𝑤) = (𝐺𝑚))
2322breq2d 3804 . . 3 (𝑤 = 𝑚 → (1P<P (𝐺𝑤) ↔ 1P<P (𝐺𝑚)))
2423cbvralv 2550 . 2 (∀𝑤N 1P<P (𝐺𝑤) ↔ ∀𝑚N 1P<P (𝐺𝑚))
2521, 24sylib 131 1 (𝜑 → ∀𝑚N 1P<P (𝐺𝑚))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409  {cab 2042  wral 2323  cop 3406   class class class wbr 3792  cmpt 3846  wf 4926  cfv 4930  crio 5495  (class class class)co 5540  1𝑜c1o 6025  [cec 6135  Ncnpi 6428   <N clti 6431   ~Q ceq 6435  *Qcrq 6440   <Q cltq 6441  Pcnp 6447  1Pc1p 6448   +P cpp 6449  <P cltp 6451   ~R cer 6452  Rcnr 6453  1Rc1r 6455   +R cplr 6457   <R cltr 6459
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875
This theorem is referenced by:  caucvgsrlemgt1  6937
  Copyright terms: Public domain W3C validator