ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemoffval GIF version

Theorem caucvgsrlemoffval 6908
Description: Lemma for caucvgsr 6914. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlembnd.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
caucvgsrlembnd.offset 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
Assertion
Ref Expression
caucvgsrlemoffval ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((𝐹𝐽) +R 1R))
Distinct variable groups:   𝐴,𝑎   𝐴,𝑚   𝐹,𝑎   𝐽,𝑎   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑘,𝑚,𝑛,𝑙)   𝐺(𝑢,𝑘,𝑚,𝑛,𝑎,𝑙)   𝐽(𝑢,𝑘,𝑚,𝑛,𝑙)

Proof of Theorem caucvgsrlemoffval
StepHypRef Expression
1 caucvgsrlembnd.offset . . . . 5 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
21a1i 9 . . . 4 ((𝜑𝐽N) → 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R))))
3 fveq2 5203 . . . . . . 7 (𝑎 = 𝐽 → (𝐹𝑎) = (𝐹𝐽))
43oveq1d 5552 . . . . . 6 (𝑎 = 𝐽 → ((𝐹𝑎) +R 1R) = ((𝐹𝐽) +R 1R))
54oveq1d 5552 . . . . 5 (𝑎 = 𝐽 → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)))
65adantl 266 . . . 4 (((𝜑𝐽N) ∧ 𝑎 = 𝐽) → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)))
7 simpr 107 . . . 4 ((𝜑𝐽N) → 𝐽N)
8 caucvgsr.f . . . . . . 7 (𝜑𝐹:NR)
98ffvelrnda 5327 . . . . . 6 ((𝜑𝐽N) → (𝐹𝐽) ∈ R)
10 1sr 6864 . . . . . 6 1RR
11 addclsr 6866 . . . . . 6 (((𝐹𝐽) ∈ R ∧ 1RR) → ((𝐹𝐽) +R 1R) ∈ R)
129, 10, 11sylancl 398 . . . . 5 ((𝜑𝐽N) → ((𝐹𝐽) +R 1R) ∈ R)
13 caucvgsrlembnd.bnd . . . . . . . 8 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
1413caucvgsrlemasr 6902 . . . . . . 7 (𝜑𝐴R)
1514adantr 265 . . . . . 6 ((𝜑𝐽N) → 𝐴R)
16 m1r 6865 . . . . . 6 -1RR
17 mulclsr 6867 . . . . . 6 ((𝐴R ∧ -1RR) → (𝐴 ·R -1R) ∈ R)
1815, 16, 17sylancl 398 . . . . 5 ((𝜑𝐽N) → (𝐴 ·R -1R) ∈ R)
19 addclsr 6866 . . . . 5 ((((𝐹𝐽) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R) → (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) ∈ R)
2012, 18, 19syl2anc 397 . . . 4 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) ∈ R)
212, 6, 7, 20fvmptd 5278 . . 3 ((𝜑𝐽N) → (𝐺𝐽) = (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)))
2221oveq1d 5552 . 2 ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴))
23 addasssrg 6869 . . 3 ((((𝐹𝐽) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R𝐴R) → ((((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴) = (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)))
2412, 18, 15, 23syl3anc 1144 . 2 ((𝜑𝐽N) → ((((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴) = (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)))
25 addcomsrg 6868 . . . . . 6 (((𝐴 ·R -1R) ∈ R𝐴R) → ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R)))
2618, 15, 25syl2anc 397 . . . . 5 ((𝜑𝐽N) → ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R)))
27 pn0sr 6884 . . . . . 6 (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
2815, 27syl 14 . . . . 5 ((𝜑𝐽N) → (𝐴 +R (𝐴 ·R -1R)) = 0R)
2926, 28eqtrd 2086 . . . 4 ((𝜑𝐽N) → ((𝐴 ·R -1R) +R 𝐴) = 0R)
3029oveq2d 5553 . . 3 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)) = (((𝐹𝐽) +R 1R) +R 0R))
31 0idsr 6880 . . . 4 (((𝐹𝐽) +R 1R) ∈ R → (((𝐹𝐽) +R 1R) +R 0R) = ((𝐹𝐽) +R 1R))
3212, 31syl 14 . . 3 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R 0R) = ((𝐹𝐽) +R 1R))
3330, 32eqtrd 2086 . 2 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)) = ((𝐹𝐽) +R 1R))
3422, 24, 333eqtrd 2090 1 ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((𝐹𝐽) +R 1R))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1257  wcel 1407  {cab 2040  wral 2321  cop 3403   class class class wbr 3789  cmpt 3843  wf 4923  cfv 4927  (class class class)co 5537  1𝑜c1o 6022  [cec 6132  Ncnpi 6398   <N clti 6401   ~Q ceq 6405  *Qcrq 6410   <Q cltq 6411  1Pc1p 6418   +P cpp 6419   ~R cer 6422  Rcnr 6423  0Rc0r 6424  1Rc1r 6425  -1Rcm1r 6426   +R cplr 6427   ·R cmr 6428   <R cltr 6429
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-13 1418  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-coll 3897  ax-sep 3900  ax-nul 3908  ax-pow 3952  ax-pr 3969  ax-un 4195  ax-setind 4287  ax-iinf 4336
This theorem depends on definitions:  df-bi 114  df-dc 752  df-3or 895  df-3an 896  df-tru 1260  df-fal 1263  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ne 2219  df-ral 2326  df-rex 2327  df-reu 2328  df-rab 2330  df-v 2574  df-sbc 2785  df-csb 2878  df-dif 2945  df-un 2947  df-in 2949  df-ss 2956  df-nul 3250  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-int 3641  df-iun 3684  df-br 3790  df-opab 3844  df-mpt 3845  df-tr 3880  df-eprel 4051  df-id 4055  df-po 4058  df-iso 4059  df-iord 4128  df-on 4130  df-suc 4133  df-iom 4339  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-rn 4381  df-res 4382  df-ima 4383  df-iota 4892  df-fun 4929  df-fn 4930  df-f 4931  df-f1 4932  df-fo 4933  df-f1o 4934  df-fv 4935  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 5985  df-1o 6029  df-2o 6030  df-oadd 6033  df-omul 6034  df-er 6134  df-ec 6136  df-qs 6140  df-ni 6430  df-pli 6431  df-mi 6432  df-lti 6433  df-plpq 6470  df-mpq 6471  df-enq 6473  df-nqqs 6474  df-plqqs 6475  df-mqqs 6476  df-1nqqs 6477  df-rq 6478  df-ltnqqs 6479  df-enq0 6550  df-nq0 6551  df-0nq0 6552  df-plq0 6553  df-mq0 6554  df-inp 6592  df-i1p 6593  df-iplp 6594  df-imp 6595  df-enr 6839  df-nr 6840  df-plr 6841  df-mr 6842  df-ltr 6843  df-0r 6844  df-1r 6845  df-m1r 6846
This theorem is referenced by:  caucvgsrlemoffcau  6910  caucvgsrlemoffgt1  6911  caucvgsrlemoffres  6912
  Copyright terms: Public domain W3C validator