![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvmpt2v | GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 3892, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
cbvmpt2v.1 | ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) |
cbvmpt2v.2 | ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) |
Ref | Expression |
---|---|
cbvmpt2v | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2223 | . 2 ⊢ Ⅎ𝑧𝐶 | |
2 | nfcv 2223 | . 2 ⊢ Ⅎ𝑤𝐶 | |
3 | nfcv 2223 | . 2 ⊢ Ⅎ𝑥𝐷 | |
4 | nfcv 2223 | . 2 ⊢ Ⅎ𝑦𝐷 | |
5 | cbvmpt2v.1 | . . 3 ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) | |
6 | cbvmpt2v.2 | . . 3 ⊢ (𝑦 = 𝑤 → 𝐸 = 𝐷) | |
7 | 5, 6 | sylan9eq 2135 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
8 | 1, 2, 3, 4, 7 | cbvmpt2 5635 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ↦ cmpt2 5566 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-v 2612 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-opab 3860 df-oprab 5568 df-mpt2 5569 |
This theorem is referenced by: frec2uzrdg 9561 frecuzrdgsuc 9566 iseqvalcbv 9601 resqrexlemfp1 10114 resqrex 10131 sqne2sq 10780 |
Copyright terms: Public domain | W3C validator |