ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvraldva2 GIF version

Theorem cbvraldva2 2554
Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
cbvraldva2.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
cbvraldva2.2 ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)
Assertion
Ref Expression
cbvraldva2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐵 𝜒))
Distinct variable groups:   𝑦,𝐴   𝜓,𝑦   𝑥,𝐵   𝜒,𝑥   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem cbvraldva2
StepHypRef Expression
1 simpr 107 . . . . 5 ((𝜑𝑥 = 𝑦) → 𝑥 = 𝑦)
2 cbvraldva2.2 . . . . 5 ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)
31, 2eleq12d 2124 . . . 4 ((𝜑𝑥 = 𝑦) → (𝑥𝐴𝑦𝐵))
4 cbvraldva2.1 . . . 4 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
53, 4imbi12d 227 . . 3 ((𝜑𝑥 = 𝑦) → ((𝑥𝐴𝜓) ↔ (𝑦𝐵𝜒)))
65cbvaldva 1819 . 2 (𝜑 → (∀𝑥(𝑥𝐴𝜓) ↔ ∀𝑦(𝑦𝐵𝜒)))
7 df-ral 2328 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
8 df-ral 2328 . 2 (∀𝑦𝐵 𝜒 ↔ ∀𝑦(𝑦𝐵𝜒))
96, 7, 83bitr4g 216 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐵 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wal 1257   = wceq 1259  wcel 1409  wral 2323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-nf 1366  df-cleq 2049  df-clel 2052  df-ral 2328
This theorem is referenced by:  cbvraldva  2556  acexmid  5539  tfrlem3ag  5955  tfrlem3a  5956  tfrlemi1  5977
  Copyright terms: Public domain W3C validator