ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdeqi GIF version

Theorem cdeqi 2809
Description: Deduce conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
cdeqi.1 (𝑥 = 𝑦𝜑)
Assertion
Ref Expression
cdeqi CondEq(𝑥 = 𝑦𝜑)

Proof of Theorem cdeqi
StepHypRef Expression
1 cdeqi.1 . 2 (𝑥 = 𝑦𝜑)
2 df-cdeq 2808 . 2 (CondEq(𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦𝜑))
31, 2mpbir 144 1 CondEq(𝑥 = 𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  CondEqwcdeq 2807
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-cdeq 2808
This theorem is referenced by:  cdeqth  2811  cdeqnot  2812  cdeqal  2813  cdeqab  2814  cdeqim  2817  cdeqcv  2818  cdeqeq  2819  cdeqel  2820
  Copyright terms: Public domain W3C validator