![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > celaront | GIF version |
Description: "Celaront", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜒 is 𝜑, and some 𝜒 exist, therefore some 𝜒 is not 𝜓. (In Aristotelian notation, EAO-1: MeP and SaM therefore SoP.) For example, given "No reptiles have fur", "All snakes are reptiles.", and "Snakes exist.", prove "Some snakes have no fur". Note the existence hypothesis. Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) |
Ref | Expression |
---|---|
celaront.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) |
celaront.min | ⊢ ∀𝑥(𝜒 → 𝜑) |
celaront.e | ⊢ ∃𝑥𝜒 |
Ref | Expression |
---|---|
celaront | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | celaront.maj | . 2 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
2 | celaront.min | . 2 ⊢ ∀𝑥(𝜒 → 𝜑) | |
3 | celaront.e | . 2 ⊢ ∃𝑥𝜒 | |
4 | 1, 2, 3 | barbari 2044 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ∀wal 1283 ∃wex 1422 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-ial 1468 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |