![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ceqsex2v | GIF version |
Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.) |
Ref | Expression |
---|---|
ceqsex2v.1 | ⊢ 𝐴 ∈ V |
ceqsex2v.2 | ⊢ 𝐵 ∈ V |
ceqsex2v.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
ceqsex2v.4 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ceqsex2v | ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1462 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | nfv 1462 | . 2 ⊢ Ⅎ𝑦𝜒 | |
3 | ceqsex2v.1 | . 2 ⊢ 𝐴 ∈ V | |
4 | ceqsex2v.2 | . 2 ⊢ 𝐵 ∈ V | |
5 | ceqsex2v.3 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | ceqsex2v.4 | . 2 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
7 | 1, 2, 3, 4, 5, 6 | ceqsex2 2640 | 1 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∧ w3a 920 = wceq 1285 ∃wex 1422 ∈ wcel 1434 Vcvv 2602 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-v 2604 |
This theorem is referenced by: ceqsex3v 2642 ceqsex4v 2643 |
Copyright terms: Public domain | W3C validator |