ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cju GIF version

Theorem cju 8182
Description: The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
cju (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cju
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7254 . . 3 (𝐴 ∈ ℂ → ∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ 𝐴 = (𝑦 + (i · 𝑧)))
2 recn 7245 . . . . . . 7 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
3 ax-icn 7210 . . . . . . . 8 i ∈ ℂ
4 recn 7245 . . . . . . . 8 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
5 mulcl 7239 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑧 ∈ ℂ) → (i · 𝑧) ∈ ℂ)
63, 4, 5sylancr 405 . . . . . . 7 (𝑧 ∈ ℝ → (i · 𝑧) ∈ ℂ)
7 subcl 7451 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (i · 𝑧) ∈ ℂ) → (𝑦 − (i · 𝑧)) ∈ ℂ)
82, 6, 7syl2an 283 . . . . . 6 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 − (i · 𝑧)) ∈ ℂ)
92adantr 270 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℂ)
106adantl 271 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · 𝑧) ∈ ℂ)
119, 10, 9ppncand 7603 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) = (𝑦 + 𝑦))
12 readdcl 7238 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 + 𝑦) ∈ ℝ)
1312anidms 389 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦 + 𝑦) ∈ ℝ)
1413adantr 270 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 + 𝑦) ∈ ℝ)
1511, 14eqeltrd 2159 . . . . . 6 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ)
169, 10, 10pnncand 7602 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))) = ((i · 𝑧) + (i · 𝑧)))
173a1i 9 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → i ∈ ℂ)
184adantl 271 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
1917, 18, 18adddid 7282 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · (𝑧 + 𝑧)) = ((i · 𝑧) + (i · 𝑧)))
2016, 19eqtr4d 2118 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))) = (i · (𝑧 + 𝑧)))
2120oveq2d 5581 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) = (i · (i · (𝑧 + 𝑧))))
2218, 18addcld 7277 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 + 𝑧) ∈ ℂ)
23 mulass 7243 . . . . . . . . . 10 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (𝑧 + 𝑧) ∈ ℂ) → ((i · i) · (𝑧 + 𝑧)) = (i · (i · (𝑧 + 𝑧))))
243, 3, 23mp3an12 1259 . . . . . . . . 9 ((𝑧 + 𝑧) ∈ ℂ → ((i · i) · (𝑧 + 𝑧)) = (i · (i · (𝑧 + 𝑧))))
2522, 24syl 14 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((i · i) · (𝑧 + 𝑧)) = (i · (i · (𝑧 + 𝑧))))
2621, 25eqtr4d 2118 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) = ((i · i) · (𝑧 + 𝑧)))
27 ixi 7827 . . . . . . . . 9 (i · i) = -1
28 1re 7257 . . . . . . . . . 10 1 ∈ ℝ
2928renegcli 7514 . . . . . . . . 9 -1 ∈ ℝ
3027, 29eqeltri 2155 . . . . . . . 8 (i · i) ∈ ℝ
31 simpr 108 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
3231, 31readdcld 7287 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 + 𝑧) ∈ ℝ)
33 remulcl 7240 . . . . . . . 8 (((i · i) ∈ ℝ ∧ (𝑧 + 𝑧) ∈ ℝ) → ((i · i) · (𝑧 + 𝑧)) ∈ ℝ)
3430, 32, 33sylancr 405 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((i · i) · (𝑧 + 𝑧)) ∈ ℝ)
3526, 34eqeltrd 2159 . . . . . 6 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ)
36 oveq2 5573 . . . . . . . . 9 (𝑥 = (𝑦 − (i · 𝑧)) → ((𝑦 + (i · 𝑧)) + 𝑥) = ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))))
3736eleq1d 2151 . . . . . . . 8 (𝑥 = (𝑦 − (i · 𝑧)) → (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ↔ ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ))
38 oveq2 5573 . . . . . . . . . 10 (𝑥 = (𝑦 − (i · 𝑧)) → ((𝑦 + (i · 𝑧)) − 𝑥) = ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))))
3938oveq2d 5581 . . . . . . . . 9 (𝑥 = (𝑦 − (i · 𝑧)) → (i · ((𝑦 + (i · 𝑧)) − 𝑥)) = (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))))
4039eleq1d 2151 . . . . . . . 8 (𝑥 = (𝑦 − (i · 𝑧)) → ((i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ ↔ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ))
4137, 40anbi12d 457 . . . . . . 7 (𝑥 = (𝑦 − (i · 𝑧)) → ((((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ) ↔ (((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ)))
4241rspcev 2711 . . . . . 6 (((𝑦 − (i · 𝑧)) ∈ ℂ ∧ (((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ)) → ∃𝑥 ∈ ℂ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ))
438, 15, 35, 42syl12anc 1168 . . . . 5 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ∃𝑥 ∈ ℂ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ))
44 oveq1 5572 . . . . . . . 8 (𝐴 = (𝑦 + (i · 𝑧)) → (𝐴 + 𝑥) = ((𝑦 + (i · 𝑧)) + 𝑥))
4544eleq1d 2151 . . . . . . 7 (𝐴 = (𝑦 + (i · 𝑧)) → ((𝐴 + 𝑥) ∈ ℝ ↔ ((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ))
46 oveq1 5572 . . . . . . . . 9 (𝐴 = (𝑦 + (i · 𝑧)) → (𝐴𝑥) = ((𝑦 + (i · 𝑧)) − 𝑥))
4746oveq2d 5581 . . . . . . . 8 (𝐴 = (𝑦 + (i · 𝑧)) → (i · (𝐴𝑥)) = (i · ((𝑦 + (i · 𝑧)) − 𝑥)))
4847eleq1d 2151 . . . . . . 7 (𝐴 = (𝑦 + (i · 𝑧)) → ((i · (𝐴𝑥)) ∈ ℝ ↔ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ))
4945, 48anbi12d 457 . . . . . 6 (𝐴 = (𝑦 + (i · 𝑧)) → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ)))
5049rexbidv 2375 . . . . 5 (𝐴 = (𝑦 + (i · 𝑧)) → (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ∃𝑥 ∈ ℂ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ)))
5143, 50syl5ibrcom 155 . . . 4 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 = (𝑦 + (i · 𝑧)) → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
5251rexlimivv 2488 . . 3 (∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ 𝐴 = (𝑦 + (i · 𝑧)) → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
531, 52syl 14 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
54 an4 551 . . . 4 ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) ↔ (((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)))
55 resubcl 7516 . . . . . . 7 (((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) ∈ ℝ)
56 pnpcan 7491 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) = (𝑥𝑦))
57563expb 1140 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) = (𝑥𝑦))
5857eleq1d 2151 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((𝐴 + 𝑥) − (𝐴 + 𝑦)) ∈ ℝ ↔ (𝑥𝑦) ∈ ℝ))
5955, 58syl5ib 152 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) → (𝑥𝑦) ∈ ℝ))
60 resubcl 7516 . . . . . . . 8 (((i · (𝐴𝑦)) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) → ((i · (𝐴𝑦)) − (i · (𝐴𝑥))) ∈ ℝ)
6160ancoms 264 . . . . . . 7 (((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ) → ((i · (𝐴𝑦)) − (i · (𝐴𝑥))) ∈ ℝ)
623a1i 9 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → i ∈ ℂ)
63 subcl 7451 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴𝑦) ∈ ℂ)
6463adantrl 462 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐴𝑦) ∈ ℂ)
65 subcl 7451 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴𝑥) ∈ ℂ)
6665adantrr 463 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐴𝑥) ∈ ℂ)
6762, 64, 66subdid 7662 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (i · ((𝐴𝑦) − (𝐴𝑥))) = ((i · (𝐴𝑦)) − (i · (𝐴𝑥))))
68 nnncan1 7488 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴𝑦) − (𝐴𝑥)) = (𝑥𝑦))
69683com23 1145 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴𝑦) − (𝐴𝑥)) = (𝑥𝑦))
70693expb 1140 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝐴𝑦) − (𝐴𝑥)) = (𝑥𝑦))
7170oveq2d 5581 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (i · ((𝐴𝑦) − (𝐴𝑥))) = (i · (𝑥𝑦)))
7267, 71eqtr3d 2117 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((i · (𝐴𝑦)) − (i · (𝐴𝑥))) = (i · (𝑥𝑦)))
7372eleq1d 2151 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((i · (𝐴𝑦)) − (i · (𝐴𝑥))) ∈ ℝ ↔ (i · (𝑥𝑦)) ∈ ℝ))
7461, 73syl5ib 152 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ) → (i · (𝑥𝑦)) ∈ ℝ))
7559, 74anim12d 328 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → ((𝑥𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ)))
76 rimul 7829 . . . . . 6 (((𝑥𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ) → (𝑥𝑦) = 0)
7776a1i 9 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((𝑥𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ) → (𝑥𝑦) = 0))
78 subeq0 7478 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
7978biimpd 142 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) = 0 → 𝑥 = 𝑦))
8079adantl 271 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑥𝑦) = 0 → 𝑥 = 𝑦))
8175, 77, 803syld 56 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦))
8254, 81syl5bi 150 . . 3 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦))
8382ralrimivva 2449 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦))
84 oveq2 5573 . . . . 5 (𝑥 = 𝑦 → (𝐴 + 𝑥) = (𝐴 + 𝑦))
8584eleq1d 2151 . . . 4 (𝑥 = 𝑦 → ((𝐴 + 𝑥) ∈ ℝ ↔ (𝐴 + 𝑦) ∈ ℝ))
86 oveq2 5573 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
8786oveq2d 5581 . . . . 5 (𝑥 = 𝑦 → (i · (𝐴𝑥)) = (i · (𝐴𝑦)))
8887eleq1d 2151 . . . 4 (𝑥 = 𝑦 → ((i · (𝐴𝑥)) ∈ ℝ ↔ (i · (𝐴𝑦)) ∈ ℝ))
8985, 88anbi12d 457 . . 3 (𝑥 = 𝑦 → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)))
9089reu4 2796 . 2 (∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦)))
9153, 83, 90sylanbrc 408 1 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  wral 2353  wrex 2354  ∃!wreu 2355  (class class class)co 5565  cc 7118  cr 7119  0cc0 7120  1c1 7121  ici 7122   + caddc 7123   · cmul 7125  cmin 7423  -cneg 7424
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-cnex 7206  ax-resscn 7207  ax-1cn 7208  ax-1re 7209  ax-icn 7210  ax-addcl 7211  ax-addrcl 7212  ax-mulcl 7213  ax-mulrcl 7214  ax-addcom 7215  ax-mulcom 7216  ax-addass 7217  ax-mulass 7218  ax-distr 7219  ax-i2m1 7220  ax-0lt1 7221  ax-1rid 7222  ax-0id 7223  ax-rnegex 7224  ax-precex 7225  ax-cnre 7226  ax-pre-ltirr 7227  ax-pre-lttrn 7229  ax-pre-apti 7230  ax-pre-ltadd 7231  ax-pre-mulgt0 7232
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2613  df-sbc 2826  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-br 3807  df-opab 3861  df-id 4077  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-iota 4918  df-fun 4955  df-fv 4961  df-riota 5521  df-ov 5568  df-oprab 5569  df-mpt2 5570  df-pnf 7294  df-mnf 7295  df-ltxr 7297  df-sub 7425  df-neg 7426  df-reap 7819
This theorem is referenced by:  cjval  9958  cjth  9959  cjf  9960  remim  9973
  Copyright terms: Public domain W3C validator