![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > clelsb4 | GIF version |
Description: Substitution applied to an atomic wff (class version of elsb4 1895). (Contributed by Jim Kingdon, 22-Nov-2018.) |
Ref | Expression |
---|---|
clelsb4 | ⊢ ([𝑥 / 𝑦]𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1462 | . . 3 ⊢ Ⅎ𝑦 𝐴 ∈ 𝑤 | |
2 | 1 | sbco2 1881 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝐴 ∈ 𝑤 ↔ [𝑥 / 𝑤]𝐴 ∈ 𝑤) |
3 | nfv 1462 | . . . 4 ⊢ Ⅎ𝑤 𝐴 ∈ 𝑦 | |
4 | eleq2 2143 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑦)) | |
5 | 3, 4 | sbie 1715 | . . 3 ⊢ ([𝑦 / 𝑤]𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑦) |
6 | 5 | sbbii 1689 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝐴 ∈ 𝑤 ↔ [𝑥 / 𝑦]𝐴 ∈ 𝑦) |
7 | nfv 1462 | . . 3 ⊢ Ⅎ𝑤 𝐴 ∈ 𝑥 | |
8 | eleq2 2143 | . . 3 ⊢ (𝑤 = 𝑥 → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑥)) | |
9 | 7, 8 | sbie 1715 | . 2 ⊢ ([𝑥 / 𝑤]𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑥) |
10 | 2, 6, 9 | 3bitr3i 208 | 1 ⊢ ([𝑥 / 𝑦]𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ∈ wcel 1434 [wsb 1686 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-cleq 2075 df-clel 2078 |
This theorem is referenced by: peano1 4343 peano2 4344 |
Copyright terms: Public domain | W3C validator |