Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2iser GIF version

Theorem clim2iser 9710
 Description: The limit of an infinite series with an initial segment removed. (Contributed by Jim Kingdon, 20-Aug-2021.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
clim2ser.2 (𝜑𝑁𝑍)
clim2ser.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
clim2ser.5 (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ 𝐴)
Assertion
Ref Expression
clim2iser (𝜑 → seq(𝑁 + 1)( + , 𝐹, ℂ) ⇝ (𝐴 − (seq𝑀( + , 𝐹, ℂ)‘𝑁)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍

Proof of Theorem clim2iser
Dummy variables 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2040 . 2 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
2 clim2ser.2 . . . . 5 (𝜑𝑁𝑍)
3 clim2ser.1 . . . . 5 𝑍 = (ℤ𝑀)
42, 3syl6eleq 2130 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
5 peano2uz 8474 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
64, 5syl 14 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
7 eluzelz 8430 . . 3 ((𝑁 + 1) ∈ (ℤ𝑀) → (𝑁 + 1) ∈ ℤ)
86, 7syl 14 . 2 (𝜑 → (𝑁 + 1) ∈ ℤ)
9 clim2ser.5 . 2 (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ 𝐴)
10 eluzel2 8426 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
114, 10syl 14 . . . 4 (𝜑𝑀 ∈ ℤ)
12 clim2ser.4 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
133, 11, 12iserf 9087 . . 3 (𝜑 → seq𝑀( + , 𝐹, ℂ):𝑍⟶ℂ)
1413, 2ffvelrnd 5266 . 2 (𝜑 → (seq𝑀( + , 𝐹, ℂ)‘𝑁) ∈ ℂ)
15 iseqex 9067 . . 3 seq(𝑁 + 1)( + , 𝐹, ℂ) ∈ V
1615a1i 9 . 2 (𝜑 → seq(𝑁 + 1)( + , 𝐹, ℂ) ∈ V)
1713adantr 261 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → seq𝑀( + , 𝐹, ℂ):𝑍⟶ℂ)
186, 3syl6eleqr 2131 . . . 4 (𝜑 → (𝑁 + 1) ∈ 𝑍)
193uztrn2 8438 . . . 4 (((𝑁 + 1) ∈ 𝑍𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗𝑍)
2018, 19sylan 267 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗𝑍)
2117, 20ffvelrnd 5266 . 2 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘𝑗) ∈ ℂ)
22 addcl 6963 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ)
2322adantl 262 . . . . 5 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ)
24 addass 6968 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦)))
2524adantl 262 . . . . 5 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦)))
26 simpr 103 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗 ∈ (ℤ‘(𝑁 + 1)))
27 cnex 6962 . . . . . 6 ℂ ∈ V
2827a1i 9 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ℂ ∈ V)
294adantr 261 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (ℤ𝑀))
303eleq2i 2104 . . . . . . 7 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
3130, 12sylan2br 272 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
3231adantlr 446 . . . . 5 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
3323, 25, 26, 28, 29, 32iseqsplit 9092 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘𝑗) = ((seq𝑀( + , 𝐹, ℂ)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹, ℂ)‘𝑗)))
3433oveq1d 5490 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( + , 𝐹, ℂ)‘𝑗) − (seq𝑀( + , 𝐹, ℂ)‘𝑁)) = (((seq𝑀( + , 𝐹, ℂ)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹, ℂ)‘𝑗)) − (seq𝑀( + , 𝐹, ℂ)‘𝑁)))
3514adantr 261 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘𝑁) ∈ ℂ)
363uztrn2 8438 . . . . . . . 8 (((𝑁 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
3718, 36sylan 267 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
3837, 12syldan 266 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑘) ∈ ℂ)
391, 8, 38iserf 9087 . . . . 5 (𝜑 → seq(𝑁 + 1)( + , 𝐹, ℂ):(ℤ‘(𝑁 + 1))⟶ℂ)
4039ffvelrnda 5265 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( + , 𝐹, ℂ)‘𝑗) ∈ ℂ)
4135, 40pncan2d 7279 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (((seq𝑀( + , 𝐹, ℂ)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹, ℂ)‘𝑗)) − (seq𝑀( + , 𝐹, ℂ)‘𝑁)) = (seq(𝑁 + 1)( + , 𝐹, ℂ)‘𝑗))
4234, 41eqtr2d 2073 . 2 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( + , 𝐹, ℂ)‘𝑗) = ((seq𝑀( + , 𝐹, ℂ)‘𝑗) − (seq𝑀( + , 𝐹, ℂ)‘𝑁)))
431, 8, 9, 14, 16, 21, 42climsubc1 9705 1 (𝜑 → seq(𝑁 + 1)( + , 𝐹, ℂ) ⇝ (𝐴 − (seq𝑀( + , 𝐹, ℂ)‘𝑁)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∧ w3a 885   = wceq 1243   ∈ wcel 1393  Vcvv 2554   class class class wbr 3761  ⟶wf 4861  ‘cfv 4865  (class class class)co 5475  ℂcc 6844  1c1 6847   + caddc 6849   − cmin 7138  ℤcz 8193  ℤ≥cuz 8421  seqcseq 9065   ⇝ cli 9652 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3869  ax-sep 3872  ax-nul 3880  ax-pow 3924  ax-pr 3941  ax-un 4142  ax-setind 4232  ax-iinf 4274  ax-cnex 6932  ax-resscn 6933  ax-1cn 6934  ax-1re 6935  ax-icn 6936  ax-addcl 6937  ax-addrcl 6938  ax-mulcl 6939  ax-mulrcl 6940  ax-addcom 6941  ax-mulcom 6942  ax-addass 6943  ax-mulass 6944  ax-distr 6945  ax-i2m1 6946  ax-1rid 6948  ax-0id 6949  ax-rnegex 6950  ax-precex 6951  ax-cnre 6952  ax-pre-ltirr 6953  ax-pre-ltwlin 6954  ax-pre-lttrn 6955  ax-pre-apti 6956  ax-pre-ltadd 6957  ax-pre-mulgt0 6958  ax-pre-mulext 6959  ax-arch 6960  ax-caucvg 6961 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2308  df-rex 2309  df-reu 2310  df-rmo 2311  df-rab 2312  df-v 2556  df-sbc 2762  df-csb 2850  df-dif 2917  df-un 2919  df-in 2921  df-ss 2928  df-nul 3222  df-if 3329  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3578  df-int 3613  df-iun 3656  df-br 3762  df-opab 3816  df-mpt 3817  df-tr 3852  df-eprel 4023  df-id 4027  df-po 4030  df-iso 4031  df-iord 4075  df-on 4077  df-suc 4080  df-iom 4277  df-xp 4314  df-rel 4315  df-cnv 4316  df-co 4317  df-dm 4318  df-rn 4319  df-res 4320  df-ima 4321  df-iota 4830  df-fun 4867  df-fn 4868  df-f 4869  df-f1 4870  df-fo 4871  df-f1o 4872  df-fv 4873  df-riota 5431  df-ov 5478  df-oprab 5479  df-mpt2 5480  df-1st 5730  df-2nd 5731  df-recs 5883  df-irdg 5920  df-frec 5941  df-1o 5964  df-2o 5965  df-oadd 5968  df-omul 5969  df-er 6069  df-ec 6071  df-qs 6075  df-ni 6359  df-pli 6360  df-mi 6361  df-lti 6362  df-plpq 6399  df-mpq 6400  df-enq 6402  df-nqqs 6403  df-plqqs 6404  df-mqqs 6405  df-1nqqs 6406  df-rq 6407  df-ltnqqs 6408  df-enq0 6479  df-nq0 6480  df-0nq0 6481  df-plq0 6482  df-mq0 6483  df-inp 6521  df-i1p 6522  df-iplp 6523  df-iltp 6525  df-enr 6768  df-nr 6769  df-ltr 6772  df-0r 6773  df-1r 6774  df-0 6853  df-1 6854  df-r 6856  df-lt 6859  df-pnf 7018  df-mnf 7019  df-xr 7020  df-ltxr 7021  df-le 7022  df-sub 7140  df-neg 7141  df-reap 7518  df-ap 7525  df-div 7604  df-inn 7867  df-2 7925  df-3 7926  df-4 7927  df-n0 8130  df-z 8194  df-uz 8422  df-rp 8531  df-fz 8818  df-iseq 9066  df-iexp 9109  df-cj 9296  df-re 9297  df-im 9298  df-rsqrt 9450  df-abs 9451  df-clim 9653 This theorem is referenced by:  iiserex  9712
 Copyright terms: Public domain W3C validator