![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climabs | GIF version |
Description: Limit of the absolute value of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.) |
Ref | Expression |
---|---|
climcn1lem.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climcn1lem.2 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climcn1lem.4 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climcn1lem.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climcn1lem.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climabs.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) |
Ref | Expression |
---|---|
climabs | ⊢ (𝜑 → 𝐺 ⇝ (abs‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climcn1lem.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climcn1lem.2 | . 2 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
3 | climcn1lem.4 | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
4 | climcn1lem.5 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | climcn1lem.6 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
6 | absf 10134 | . . 3 ⊢ abs:ℂ⟶ℝ | |
7 | ax-resscn 7130 | . . 3 ⊢ ℝ ⊆ ℂ | |
8 | fss 5085 | . . 3 ⊢ ((abs:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → abs:ℂ⟶ℂ) | |
9 | 6, 7, 8 | mp2an 417 | . 2 ⊢ abs:ℂ⟶ℂ |
10 | abscn2 10291 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((abs‘𝑧) − (abs‘𝐴))) < 𝑥)) | |
11 | climabs.7 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) | |
12 | 1, 2, 3, 4, 5, 9, 10, 11 | climcn1lem 10295 | 1 ⊢ (𝜑 → 𝐺 ⇝ (abs‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 ∈ wcel 1434 ⊆ wss 2974 class class class wbr 3793 ⟶wf 4928 ‘cfv 4932 ℂcc 7041 ℝcr 7042 ℤcz 8432 ℤ≥cuz 8700 abscabs 10021 ⇝ cli 10255 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-coll 3901 ax-sep 3904 ax-nul 3912 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 ax-iinf 4337 ax-cnex 7129 ax-resscn 7130 ax-1cn 7131 ax-1re 7132 ax-icn 7133 ax-addcl 7134 ax-addrcl 7135 ax-mulcl 7136 ax-mulrcl 7137 ax-addcom 7138 ax-mulcom 7139 ax-addass 7140 ax-mulass 7141 ax-distr 7142 ax-i2m1 7143 ax-0lt1 7144 ax-1rid 7145 ax-0id 7146 ax-rnegex 7147 ax-precex 7148 ax-cnre 7149 ax-pre-ltirr 7150 ax-pre-ltwlin 7151 ax-pre-lttrn 7152 ax-pre-apti 7153 ax-pre-ltadd 7154 ax-pre-mulgt0 7155 ax-pre-mulext 7156 ax-arch 7157 ax-caucvg 7158 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-reu 2356 df-rmo 2357 df-rab 2358 df-v 2604 df-sbc 2817 df-csb 2910 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-nul 3259 df-if 3360 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-int 3645 df-iun 3688 df-br 3794 df-opab 3848 df-mpt 3849 df-tr 3884 df-id 4056 df-po 4059 df-iso 4060 df-iord 4129 df-on 4131 df-ilim 4132 df-suc 4134 df-iom 4340 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-rn 4382 df-res 4383 df-ima 4384 df-iota 4897 df-fun 4934 df-fn 4935 df-f 4936 df-f1 4937 df-fo 4938 df-f1o 4939 df-fv 4940 df-riota 5499 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-1st 5798 df-2nd 5799 df-recs 5954 df-frec 6040 df-pnf 7217 df-mnf 7218 df-xr 7219 df-ltxr 7220 df-le 7221 df-sub 7348 df-neg 7349 df-reap 7742 df-ap 7749 df-div 7828 df-inn 8107 df-2 8165 df-3 8166 df-4 8167 df-n0 8356 df-z 8433 df-uz 8701 df-rp 8816 df-iseq 9522 df-iexp 9573 df-cj 9867 df-re 9868 df-im 9869 df-rsqrt 10022 df-abs 10023 df-clim 10256 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |