![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climaddc2 | GIF version |
Description: Limit of a constant 𝐶 added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.) |
Ref | Expression |
---|---|
climadd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climadd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climadd.4 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climaddc1.5 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
climaddc1.6 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climaddc1.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climaddc2.h | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 + (𝐹‘𝑘))) |
Ref | Expression |
---|---|
climaddc2 | ⊢ (𝜑 → 𝐺 ⇝ (𝐶 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climadd.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climadd.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climadd.4 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
4 | climaddc1.5 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | climaddc1.6 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
6 | climaddc1.7 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
7 | climaddc2.h | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 + (𝐹‘𝑘))) | |
8 | 4 | adantr 270 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ ℂ) |
9 | 8, 6 | addcomd 7396 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐶 + (𝐹‘𝑘)) = ((𝐹‘𝑘) + 𝐶)) |
10 | 7, 9 | eqtrd 2115 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = ((𝐹‘𝑘) + 𝐶)) |
11 | 1, 2, 3, 4, 5, 6, 10 | climaddc1 10386 | . 2 ⊢ (𝜑 → 𝐺 ⇝ (𝐴 + 𝐶)) |
12 | climcl 10340 | . . . 4 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
13 | 3, 12 | syl 14 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
14 | 13, 4 | addcomd 7396 | . 2 ⊢ (𝜑 → (𝐴 + 𝐶) = (𝐶 + 𝐴)) |
15 | 11, 14 | breqtrd 3829 | 1 ⊢ (𝜑 → 𝐺 ⇝ (𝐶 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 ∈ wcel 1434 class class class wbr 3805 ‘cfv 4952 (class class class)co 5564 ℂcc 7111 + caddc 7116 ℤcz 8502 ℤ≥cuz 8770 ⇝ cli 10336 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3913 ax-sep 3916 ax-nul 3924 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-iinf 4357 ax-cnex 7199 ax-resscn 7200 ax-1cn 7201 ax-1re 7202 ax-icn 7203 ax-addcl 7204 ax-addrcl 7205 ax-mulcl 7206 ax-mulrcl 7207 ax-addcom 7208 ax-mulcom 7209 ax-addass 7210 ax-mulass 7211 ax-distr 7212 ax-i2m1 7213 ax-0lt1 7214 ax-1rid 7215 ax-0id 7216 ax-rnegex 7217 ax-precex 7218 ax-cnre 7219 ax-pre-ltirr 7220 ax-pre-ltwlin 7221 ax-pre-lttrn 7222 ax-pre-apti 7223 ax-pre-ltadd 7224 ax-pre-mulgt0 7225 ax-pre-mulext 7226 ax-arch 7227 ax-caucvg 7228 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2612 df-sbc 2825 df-csb 2918 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-nul 3268 df-if 3369 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-iun 3700 df-br 3806 df-opab 3860 df-mpt 3861 df-tr 3896 df-id 4076 df-po 4079 df-iso 4080 df-iord 4149 df-on 4151 df-ilim 4152 df-suc 4154 df-iom 4360 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-f1 4957 df-fo 4958 df-f1o 4959 df-fv 4960 df-riota 5520 df-ov 5567 df-oprab 5568 df-mpt2 5569 df-1st 5819 df-2nd 5820 df-recs 5975 df-frec 6061 df-pnf 7287 df-mnf 7288 df-xr 7289 df-ltxr 7290 df-le 7291 df-sub 7418 df-neg 7419 df-reap 7812 df-ap 7819 df-div 7898 df-inn 8177 df-2 8235 df-3 8236 df-4 8237 df-n0 8426 df-z 8503 df-uz 8771 df-rp 8886 df-iseq 9592 df-iexp 9643 df-cj 9948 df-re 9949 df-im 9950 df-rsqrt 10103 df-abs 10104 df-clim 10337 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |