ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcn2 GIF version

Theorem climcn2 10053
Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climcn2.1 𝑍 = (ℤ𝑀)
climcn2.2 (𝜑𝑀 ∈ ℤ)
climcn2.3a (𝜑𝐴𝐶)
climcn2.3b (𝜑𝐵𝐷)
climcn2.4 ((𝜑 ∧ (𝑢𝐶𝑣𝐷)) → (𝑢𝐹𝑣) ∈ ℂ)
climcn2.5a (𝜑𝐺𝐴)
climcn2.5b (𝜑𝐻𝐵)
climcn2.6 (𝜑𝐾𝑊)
climcn2.7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))
climcn2.8a ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐶)
climcn2.8b ((𝜑𝑘𝑍) → (𝐻𝑘) ∈ 𝐷)
climcn2.9 ((𝜑𝑘𝑍) → (𝐾𝑘) = ((𝐺𝑘)𝐹(𝐻𝑘)))
Assertion
Ref Expression
climcn2 (𝜑𝐾 ⇝ (𝐴𝐹𝐵))
Distinct variable groups:   𝑢,𝑘,𝑣,𝐶   𝐷,𝑘,𝑢,𝑣   𝑦,𝑘,𝑧,𝐻,𝑣   𝑥,𝑘,𝜑,𝑢,𝑦,𝑧,𝑣   𝐴,𝑘,𝑢,𝑣,𝑥,𝑦,𝑧   𝑘,𝐺,𝑢,𝑣,𝑦,𝑧   𝑘,𝐾,𝑥   𝑘,𝑍,𝑦,𝑧   𝐵,𝑘,𝑢,𝑣,𝑥,𝑦,𝑧   𝑘,𝐹,𝑢,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦,𝑧)   𝐺(𝑥)   𝐻(𝑥,𝑢)   𝐾(𝑦,𝑧,𝑣,𝑢)   𝑀(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘)   𝑊(𝑥,𝑦,𝑧,𝑣,𝑢,𝑘)   𝑍(𝑥,𝑣,𝑢)

Proof of Theorem climcn2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climcn2.7 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))
2 climcn2.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
3 climcn2.2 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
43adantr 265 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑀 ∈ ℤ)
5 simprl 491 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
6 eqidd 2057 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
7 climcn2.5a . . . . . . . . . 10 (𝜑𝐺𝐴)
87adantr 265 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝐺𝐴)
92, 4, 5, 6, 8climi2 10032 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
10 simprr 492 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+)
11 eqidd 2057 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑘𝑍) → (𝐻𝑘) = (𝐻𝑘))
12 climcn2.5b . . . . . . . . . 10 (𝜑𝐻𝐵)
1312adantr 265 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝐻𝐵)
142, 4, 10, 11, 13climi2 10032 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐻𝑘) − 𝐵)) < 𝑧)
152rexanuz2 9810 . . . . . . . 8 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐻𝑘) − 𝐵)) < 𝑧))
169, 14, 15sylanbrc 402 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧))
172uztrn2 8585 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
18 climcn2.8a . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐶)
19 climcn2.8b . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐻𝑘) ∈ 𝐷)
20 oveq1 5546 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = (𝐺𝑘) → (𝑢𝐴) = ((𝐺𝑘) − 𝐴))
2120fveq2d 5209 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝐺𝑘) → (abs‘(𝑢𝐴)) = (abs‘((𝐺𝑘) − 𝐴)))
2221breq1d 3801 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝐺𝑘) → ((abs‘(𝑢𝐴)) < 𝑦 ↔ (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
2322anbi1d 446 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝐺𝑘) → (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) ↔ ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧)))
24 oveq1 5546 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = (𝐺𝑘) → (𝑢𝐹𝑣) = ((𝐺𝑘)𝐹𝑣))
2524oveq1d 5554 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝐺𝑘) → ((𝑢𝐹𝑣) − (𝐴𝐹𝐵)) = (((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵)))
2625fveq2d 5209 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝐺𝑘) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) = (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))))
2726breq1d 3801 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝐺𝑘) → ((abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥 ↔ (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))
2823, 27imbi12d 227 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝐺𝑘) → ((((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) ↔ (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)))
29 oveq1 5546 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝐻𝑘) → (𝑣𝐵) = ((𝐻𝑘) − 𝐵))
3029fveq2d 5209 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (𝐻𝑘) → (abs‘(𝑣𝐵)) = (abs‘((𝐻𝑘) − 𝐵)))
3130breq1d 3801 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝐻𝑘) → ((abs‘(𝑣𝐵)) < 𝑧 ↔ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧))
3231anbi2d 445 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝐻𝑘) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) ↔ ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧)))
33 oveq2 5547 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝐻𝑘) → ((𝐺𝑘)𝐹𝑣) = ((𝐺𝑘)𝐹(𝐻𝑘)))
3433oveq1d 5554 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (𝐻𝑘) → (((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵)) = (((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵)))
3534fveq2d 5209 . . . . . . . . . . . . . . . . . . 19 (𝑣 = (𝐻𝑘) → (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) = (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))))
3635breq1d 3801 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝐻𝑘) → ((abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥 ↔ (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
3732, 36imbi12d 227 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝐻𝑘) → ((((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) ↔ (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
3828, 37rspc2v 2684 . . . . . . . . . . . . . . . 16 (((𝐺𝑘) ∈ 𝐶 ∧ (𝐻𝑘) ∈ 𝐷) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
3918, 19, 38syl2anc 397 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
4039imp 119 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4140an32s 510 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ 𝑘𝑍) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4217, 41sylan2 274 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4342anassrs 386 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → (abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4443ralimdva 2404 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4544reximdva 2438 . . . . . . . . 9 ((𝜑 ∧ ∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4645ex 112 . . . . . . . 8 (𝜑 → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
4746adantr 265 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 ∧ (abs‘((𝐻𝑘) − 𝐵)) < 𝑧) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)))
4816, 47mpid 41 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
4948rexlimdvva 2457 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
5049adantr 265 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
511, 50mpd 13 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)
5251ralrimiva 2409 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥)
53 climcn2.6 . . 3 (𝜑𝐾𝑊)
54 climcn2.9 . . 3 ((𝜑𝑘𝑍) → (𝐾𝑘) = ((𝐺𝑘)𝐹(𝐻𝑘)))
55 climcn2.4 . . . 4 ((𝜑 ∧ (𝑢𝐶𝑣𝐷)) → (𝑢𝐹𝑣) ∈ ℂ)
56 climcn2.3a . . . 4 (𝜑𝐴𝐶)
57 climcn2.3b . . . 4 (𝜑𝐵𝐷)
5855, 56, 57caovcld 5681 . . 3 (𝜑 → (𝐴𝐹𝐵) ∈ ℂ)
5918, 19jca 294 . . . 4 ((𝜑𝑘𝑍) → ((𝐺𝑘) ∈ 𝐶 ∧ (𝐻𝑘) ∈ 𝐷))
6055ralrimivva 2418 . . . . 5 (𝜑 → ∀𝑢𝐶𝑣𝐷 (𝑢𝐹𝑣) ∈ ℂ)
6160adantr 265 . . . 4 ((𝜑𝑘𝑍) → ∀𝑢𝐶𝑣𝐷 (𝑢𝐹𝑣) ∈ ℂ)
6224eleq1d 2122 . . . . 5 (𝑢 = (𝐺𝑘) → ((𝑢𝐹𝑣) ∈ ℂ ↔ ((𝐺𝑘)𝐹𝑣) ∈ ℂ))
6333eleq1d 2122 . . . . 5 (𝑣 = (𝐻𝑘) → (((𝐺𝑘)𝐹𝑣) ∈ ℂ ↔ ((𝐺𝑘)𝐹(𝐻𝑘)) ∈ ℂ))
6462, 63rspc2v 2684 . . . 4 (((𝐺𝑘) ∈ 𝐶 ∧ (𝐻𝑘) ∈ 𝐷) → (∀𝑢𝐶𝑣𝐷 (𝑢𝐹𝑣) ∈ ℂ → ((𝐺𝑘)𝐹(𝐻𝑘)) ∈ ℂ))
6559, 61, 64sylc 60 . . 3 ((𝜑𝑘𝑍) → ((𝐺𝑘)𝐹(𝐻𝑘)) ∈ ℂ)
662, 3, 53, 54, 58, 65clim2c 10028 . 2 (𝜑 → (𝐾 ⇝ (𝐴𝐹𝐵) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(((𝐺𝑘)𝐹(𝐻𝑘)) − (𝐴𝐹𝐵))) < 𝑥))
6752, 66mpbird 160 1 (𝜑𝐾 ⇝ (𝐴𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  wral 2323  wrex 2324   class class class wbr 3791  cfv 4929  (class class class)co 5539  cc 6944   < clt 7118  cmin 7244  cz 8301  cuz 8568  +crp 8680  abscabs 9816  cli 10022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-addcom 7041  ax-addass 7043  ax-distr 7045  ax-i2m1 7046  ax-0id 7049  ax-rnegex 7050  ax-cnre 7052  ax-pre-ltirr 7053  ax-pre-ltwlin 7054  ax-pre-lttrn 7055  ax-pre-apti 7056  ax-pre-ltadd 7057
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-if 3359  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-sub 7246  df-neg 7247  df-inn 7990  df-n0 8239  df-z 8302  df-uz 8569  df-clim 10023
This theorem is referenced by:  climadd  10069  climmul  10070  climsub  10071
  Copyright terms: Public domain W3C validator