ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climconst GIF version

Theorem climconst 11059
Description: An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climconst.1 𝑍 = (ℤ𝑀)
climconst.2 (𝜑𝑀 ∈ ℤ)
climconst.3 (𝜑𝐹𝑉)
climconst.4 (𝜑𝐴 ∈ ℂ)
climconst.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
Assertion
Ref Expression
climconst (𝜑𝐹𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑉(𝑘)

Proof of Theorem climconst
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climconst.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
2 uzid 9340 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 14 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑀))
4 climconst.1 . . . . . 6 𝑍 = (ℤ𝑀)
53, 4eleqtrrdi 2233 . . . . 5 (𝜑𝑀𝑍)
65adantr 274 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝑀𝑍)
7 climconst.4 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
87subidd 8061 . . . . . . . . 9 (𝜑 → (𝐴𝐴) = 0)
98fveq2d 5425 . . . . . . . 8 (𝜑 → (abs‘(𝐴𝐴)) = (abs‘0))
10 abs0 10830 . . . . . . . 8 (abs‘0) = 0
119, 10syl6eq 2188 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐴)) = 0)
1211adantr 274 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘(𝐴𝐴)) = 0)
13 rpgt0 9453 . . . . . . 7 (𝑥 ∈ ℝ+ → 0 < 𝑥)
1413adantl 275 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 0 < 𝑥)
1512, 14eqbrtrd 3950 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘(𝐴𝐴)) < 𝑥)
1615ralrimivw 2506 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∀𝑘𝑍 (abs‘(𝐴𝐴)) < 𝑥)
17 fveq2 5421 . . . . . . 7 (𝑗 = 𝑀 → (ℤ𝑗) = (ℤ𝑀))
1817, 4syl6eqr 2190 . . . . . 6 (𝑗 = 𝑀 → (ℤ𝑗) = 𝑍)
1918raleqdv 2632 . . . . 5 (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥 ↔ ∀𝑘𝑍 (abs‘(𝐴𝐴)) < 𝑥))
2019rspcev 2789 . . . 4 ((𝑀𝑍 ∧ ∀𝑘𝑍 (abs‘(𝐴𝐴)) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥)
216, 16, 20syl2anc 408 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥)
2221ralrimiva 2505 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥)
23 climconst.3 . . 3 (𝜑𝐹𝑉)
24 climconst.5 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
257adantr 274 . . 3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
264, 1, 23, 24, 7, 25clim2c 11053 . 2 (𝜑 → (𝐹𝐴 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐴𝐴)) < 𝑥))
2722, 26mpbird 166 1 (𝜑𝐹𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  wrex 2417   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7618  0cc0 7620   < clt 7800  cmin 7933  cz 9054  cuz 9326  +crp 9441  abscabs 10769  cli 11047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-rsqrt 10770  df-abs 10771  df-clim 11048
This theorem is referenced by:  climconst2  11060  fsum3cvg  11147  fproddccvg  11341
  Copyright terms: Public domain W3C validator