ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcvg1nlem GIF version

Theorem climcvg1nlem 10387
Description: Lemma for climcvg1n 10388. We construct sequences of the real and imaginary parts of each term of 𝐹, show those converge, and use that to show that 𝐹 converges. (Contributed by Jim Kingdon, 24-Aug-2021.)
Hypotheses
Ref Expression
climcvg1n.f (𝜑𝐹:ℕ⟶ℂ)
climcvg1n.c (𝜑𝐶 ∈ ℝ+)
climcvg1n.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
climcvg1nlem.g 𝐺 = (𝑥 ∈ ℕ ↦ (ℜ‘(𝐹𝑥)))
climcvg1nlem.h 𝐻 = (𝑥 ∈ ℕ ↦ (ℑ‘(𝐹𝑥)))
climcvg1nlem.j 𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥)))
Assertion
Ref Expression
climcvg1nlem (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝐶,𝑘,𝑛   𝑘,𝐹,𝑥   𝑘,𝐺,𝑛   𝑘,𝐻,𝑛,𝑥   𝑘,𝐽   𝜑,𝑘,𝑛,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑛)   𝐺(𝑥)   𝐽(𝑥,𝑛)

Proof of Theorem climcvg1nlem
StepHypRef Expression
1 nnuz 8787 . . 3 ℕ = (ℤ‘1)
2 1zzd 8511 . . 3 (𝜑 → 1 ∈ ℤ)
3 climcvg1n.f . . . . . . . 8 (𝜑𝐹:ℕ⟶ℂ)
43ffvelrnda 5354 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ℂ)
54recld 10026 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (ℜ‘(𝐹𝑥)) ∈ ℝ)
6 climcvg1nlem.g . . . . . 6 𝐺 = (𝑥 ∈ ℕ ↦ (ℜ‘(𝐹𝑥)))
75, 6fmptd 5374 . . . . 5 (𝜑𝐺:ℕ⟶ℝ)
8 climcvg1n.c . . . . 5 (𝜑𝐶 ∈ ℝ+)
9 climcvg1n.cau . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
10 eluznn 8820 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
1110adantll 460 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
123ad2antrr 472 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:ℕ⟶ℂ)
1312, 11ffvelrnd 5355 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℂ)
1413recld 10026 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘(𝐹𝑘)) ∈ ℝ)
15 fveq2 5229 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
1615fveq2d 5233 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (ℜ‘(𝐹𝑥)) = (ℜ‘(𝐹𝑘)))
1716, 6fvmptg 5300 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ (ℜ‘(𝐹𝑘)) ∈ ℝ) → (𝐺𝑘) = (ℜ‘(𝐹𝑘)))
1811, 14, 17syl2anc 403 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐺𝑘) = (ℜ‘(𝐹𝑘)))
19 simplr 497 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
2012, 19ffvelrnd 5355 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℂ)
2120recld 10026 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘(𝐹𝑛)) ∈ ℝ)
22 fveq2 5229 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑛 → (𝐹𝑥) = (𝐹𝑛))
2322fveq2d 5233 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → (ℜ‘(𝐹𝑥)) = (ℜ‘(𝐹𝑛)))
2423, 6fvmptg 5300 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ (ℜ‘(𝐹𝑛)) ∈ ℝ) → (𝐺𝑛) = (ℜ‘(𝐹𝑛)))
2519, 21, 24syl2anc 403 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐺𝑛) = (ℜ‘(𝐹𝑛)))
2618, 25oveq12d 5581 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐺𝑘) − (𝐺𝑛)) = ((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑛))))
2713, 20resubd 10049 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘((𝐹𝑘) − (𝐹𝑛))) = ((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑛))))
2826, 27eqtr4d 2118 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐺𝑘) − (𝐺𝑛)) = (ℜ‘((𝐹𝑘) − (𝐹𝑛))))
2928fveq2d 5233 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) = (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑛)))))
3013, 20subcld 7538 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑘) − (𝐹𝑛)) ∈ ℂ)
31 absrele 10170 . . . . . . . . . . 11 (((𝐹𝑘) − (𝐹𝑛)) ∈ ℂ → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
3230, 31syl 14 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
3329, 32eqbrtrd 3825 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
3430recld 10026 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ)
3534recnd 7261 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℜ‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℂ)
3628, 35eqeltrd 2159 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐺𝑘) − (𝐺𝑛)) ∈ ℂ)
3736abscld 10268 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) ∈ ℝ)
3830abscld 10268 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ)
398ad2antrr 472 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐶 ∈ ℝ+)
4019nnrpd 8905 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℝ+)
4139, 40rpdivcld 8924 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ+)
4241rpred 8906 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ)
43 lelttr 7318 . . . . . . . . . 10 (((abs‘((𝐺𝑘) − (𝐺𝑛))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ ∧ (𝐶 / 𝑛) ∈ ℝ) → (((abs‘((𝐺𝑘) − (𝐺𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4437, 38, 42, 43syl3anc 1170 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((abs‘((𝐺𝑘) − (𝐺𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4533, 44mpand 420 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → (abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4645ralimdva 2434 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
4746ralimdva 2434 . . . . . 6 (𝜑 → (∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛)))
489, 47mpd 13 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐺𝑘) − (𝐺𝑛))) < (𝐶 / 𝑛))
497, 8, 48climrecvg1n 10386 . . . 4 (𝜑𝐺 ∈ dom ⇝ )
50 climdm 10335 . . . 4 (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺))
5149, 50sylib 120 . . 3 (𝜑𝐺 ⇝ ( ⇝ ‘𝐺))
52 nnex 8164 . . . 4 ℕ ∈ V
53 fex 5440 . . . 4 ((𝐹:ℕ⟶ℂ ∧ ℕ ∈ V) → 𝐹 ∈ V)
543, 52, 53sylancl 404 . . 3 (𝜑𝐹 ∈ V)
554imcld 10027 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (ℑ‘(𝐹𝑥)) ∈ ℝ)
56 climcvg1nlem.h . . . . . . 7 𝐻 = (𝑥 ∈ ℕ ↦ (ℑ‘(𝐹𝑥)))
5755, 56fmptd 5374 . . . . . 6 (𝜑𝐻:ℕ⟶ℝ)
5813imcld 10027 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℑ‘(𝐹𝑘)) ∈ ℝ)
5915fveq2d 5233 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (ℑ‘(𝐹𝑥)) = (ℑ‘(𝐹𝑘)))
6059, 56fvmptg 5300 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ (ℑ‘(𝐹𝑘)) ∈ ℝ) → (𝐻𝑘) = (ℑ‘(𝐹𝑘)))
6111, 58, 60syl2anc 403 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑘) = (ℑ‘(𝐹𝑘)))
6220imcld 10027 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℑ‘(𝐹𝑛)) ∈ ℝ)
6322fveq2d 5233 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑛 → (ℑ‘(𝐹𝑥)) = (ℑ‘(𝐹𝑛)))
6463, 56fvmptg 5300 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (ℑ‘(𝐹𝑛)) ∈ ℝ) → (𝐻𝑛) = (ℑ‘(𝐹𝑛)))
6519, 62, 64syl2anc 403 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑛) = (ℑ‘(𝐹𝑛)))
6661, 65oveq12d 5581 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) = ((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑛))))
6713, 20imsubd 10050 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (ℑ‘((𝐹𝑘) − (𝐹𝑛))) = ((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑛))))
6866, 67eqtr4d 2118 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) = (ℑ‘((𝐹𝑘) − (𝐹𝑛))))
6968fveq2d 5233 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) = (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑛)))))
70 absimle 10171 . . . . . . . . . . . 12 (((𝐹𝑘) − (𝐹𝑛)) ∈ ℂ → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
7130, 70syl 14 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑛)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
7269, 71eqbrtrd 3825 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))))
7361, 58eqeltrd 2159 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑘) ∈ ℝ)
7465, 62eqeltrd 2159 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐻𝑛) ∈ ℝ)
7573, 74resubcld 7604 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) ∈ ℝ)
7675recnd 7261 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘) − (𝐻𝑛)) ∈ ℂ)
7776abscld 10268 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) ∈ ℝ)
78 lelttr 7318 . . . . . . . . . . 11 (((abs‘((𝐻𝑘) − (𝐻𝑛))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∈ ℝ ∧ (𝐶 / 𝑛) ∈ ℝ) → (((abs‘((𝐻𝑘) − (𝐻𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
7977, 38, 42, 78syl3anc 1170 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((abs‘((𝐻𝑘) − (𝐻𝑛))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑛))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛)) → (abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
8072, 79mpand 420 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → (abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
8180ralimdva 2434 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
8281ralimdva 2434 . . . . . . 7 (𝜑 → (∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛)))
839, 82mpd 13 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐻𝑘) − (𝐻𝑛))) < (𝐶 / 𝑛))
8457, 8, 83climrecvg1n 10386 . . . . 5 (𝜑𝐻 ∈ dom ⇝ )
85 climdm 10335 . . . . 5 (𝐻 ∈ dom ⇝ ↔ 𝐻 ⇝ ( ⇝ ‘𝐻))
8684, 85sylib 120 . . . 4 (𝜑𝐻 ⇝ ( ⇝ ‘𝐻))
87 ax-icn 7185 . . . . 5 i ∈ ℂ
8887a1i 9 . . . 4 (𝜑 → i ∈ ℂ)
89 climcvg1nlem.j . . . . . 6 𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥)))
9052mptex 5439 . . . . . 6 (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥))) ∈ V
9189, 90eqeltri 2155 . . . . 5 𝐽 ∈ V
9291a1i 9 . . . 4 (𝜑𝐽 ∈ V)
93 ax-resscn 7182 . . . . . . 7 ℝ ⊆ ℂ
9493a1i 9 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
9557, 94fssd 5106 . . . . 5 (𝜑𝐻:ℕ⟶ℂ)
9695ffvelrnda 5354 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) ∈ ℂ)
9789a1i 9 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥))))
98 fveq2 5229 . . . . . . 7 (𝑥 = 𝑘 → (𝐻𝑥) = (𝐻𝑘))
9998oveq2d 5579 . . . . . 6 (𝑥 = 𝑘 → (i · (𝐻𝑥)) = (i · (𝐻𝑘)))
10099adantl 271 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 = 𝑘) → (i · (𝐻𝑥)) = (i · (𝐻𝑘)))
101 simpr 108 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
10287a1i 9 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → i ∈ ℂ)
103102, 96mulcld 7253 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (i · (𝐻𝑘)) ∈ ℂ)
10497, 100, 101, 103fvmptd 5305 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐽𝑘) = (i · (𝐻𝑘)))
1051, 2, 86, 88, 92, 96, 104climmulc2 10370 . . 3 (𝜑𝐽 ⇝ (i · ( ⇝ ‘𝐻)))
1067ffvelrnda 5354 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
107106recnd 7261 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
108104, 103eqeltrd 2159 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐽𝑘) ∈ ℂ)
1093ffvelrnda 5354 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
110109replimd 10029 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ((ℜ‘(𝐹𝑘)) + (i · (ℑ‘(𝐹𝑘)))))
111109recld 10026 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (ℜ‘(𝐹𝑘)) ∈ ℝ)
112101, 111, 17syl2anc 403 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = (ℜ‘(𝐹𝑘)))
113109imcld 10027 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (ℑ‘(𝐹𝑘)) ∈ ℝ)
114101, 113, 60syl2anc 403 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = (ℑ‘(𝐹𝑘)))
115114oveq2d 5579 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (i · (𝐻𝑘)) = (i · (ℑ‘(𝐹𝑘))))
116104, 115eqtrd 2115 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐽𝑘) = (i · (ℑ‘(𝐹𝑘))))
117112, 116oveq12d 5581 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝑘) + (𝐽𝑘)) = ((ℜ‘(𝐹𝑘)) + (i · (ℑ‘(𝐹𝑘)))))
118110, 117eqtr4d 2118 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐺𝑘) + (𝐽𝑘)))
1191, 2, 51, 54, 105, 107, 108, 118climadd 10365 . 2 (𝜑𝐹 ⇝ (( ⇝ ‘𝐺) + (i · ( ⇝ ‘𝐻))))
120 climrel 10320 . . 3 Rel ⇝
121120releldmi 4621 . 2 (𝐹 ⇝ (( ⇝ ‘𝐺) + (i · ( ⇝ ‘𝐻))) → 𝐹 ∈ dom ⇝ )
122119, 121syl 14 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  wral 2353  Vcvv 2610  wss 2982   class class class wbr 3805  cmpt 3859  dom cdm 4391  wf 4948  cfv 4952  (class class class)co 5563  cc 7093  cr 7094  1c1 7096  ici 7097   + caddc 7098   · cmul 7100   < clt 7267  cle 7268  cmin 7398   / cdiv 7879  cn 8158  cuz 8752  +crp 8867  cre 9928  cim 9929  abscabs 10084  cli 10318
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208  ax-arch 7209  ax-caucvg 7210
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-frec 6060  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-2 8217  df-3 8218  df-4 8219  df-n0 8408  df-z 8485  df-uz 8753  df-rp 8868  df-iseq 9574  df-iexp 9625  df-cj 9930  df-re 9931  df-im 9932  df-rsqrt 10085  df-abs 10086  df-clim 10319
This theorem is referenced by:  climcvg1n  10388
  Copyright terms: Public domain W3C validator