Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  climsqz2 GIF version

Theorem climsqz2 10086
 Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
climsqz.5 (𝜑𝐺𝑊)
climsqz.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climsqz.7 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
climsqz2.8 ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))
climsqz2.9 ((𝜑𝑘𝑍) → 𝐴 ≤ (𝐺𝑘))
Assertion
Ref Expression
climsqz2 (𝜑𝐺𝐴)
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝐴,𝑘   𝑘,𝐺   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem climsqz2
Dummy variables 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climadd.1 . . . . 5 𝑍 = (ℤ𝑀)
2 climadd.2 . . . . . 6 (𝜑𝑀 ∈ ℤ)
32adantr 265 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
4 simpr 107 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
5 eqidd 2057 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
6 climadd.4 . . . . . 6 (𝜑𝐹𝐴)
76adantr 265 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝐹𝐴)
81, 3, 4, 5, 7climi2 10039 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
91uztrn2 8585 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
10 climsqz.7 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
11 climsqz.6 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
121, 2, 6, 11climrecl 10074 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
1312adantr 265 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
14 climsqz2.8 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))
1510, 11, 13, 14lesub1dd 7625 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → ((𝐺𝑘) − 𝐴) ≤ ((𝐹𝑘) − 𝐴))
16 climsqz2.9 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝐴 ≤ (𝐺𝑘))
1713, 10, 16abssubge0d 10002 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) = ((𝐺𝑘) − 𝐴))
1813, 10, 11, 16, 14letrd 7198 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝐴 ≤ (𝐹𝑘))
1913, 11, 18abssubge0d 10002 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (abs‘((𝐹𝑘) − 𝐴)) = ((𝐹𝑘) − 𝐴))
2015, 17, 193brtr4d 3821 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)))
2120adantlr 454 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)))
2210adantlr 454 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
2312ad2antrr 465 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → 𝐴 ∈ ℝ)
2422, 23resubcld 7450 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐺𝑘) − 𝐴) ∈ ℝ)
2524recnd 7112 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐺𝑘) − 𝐴) ∈ ℂ)
2625abscld 10007 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((𝐺𝑘) − 𝐴)) ∈ ℝ)
2711adantlr 454 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
2827, 23resubcld 7450 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
2928recnd 7112 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
3029abscld 10007 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
31 rpre 8686 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
3231ad2antlr 466 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → 𝑥 ∈ ℝ)
33 lelttr 7164 . . . . . . . . . 10 (((abs‘((𝐺𝑘) − 𝐴)) ∈ ℝ ∧ (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3426, 30, 32, 33syl3anc 1146 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → (((abs‘((𝐺𝑘) − 𝐴)) ≤ (abs‘((𝐹𝑘) − 𝐴)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3521, 34mpand 413 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘𝑍) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
369, 35sylan2 274 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3736anassrs 386 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → (abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3837ralimdva 2404 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
3938reximdva 2438 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
408, 39mpd 13 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥)
4140ralrimiva 2409 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥)
42 climsqz.5 . . 3 (𝜑𝐺𝑊)
43 eqidd 2057 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
4412recnd 7112 . . 3 (𝜑𝐴 ∈ ℂ)
4510recnd 7112 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
461, 2, 42, 43, 44, 45clim2c 10035 . 2 (𝜑 → (𝐺𝐴 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑥))
4741, 46mpbird 160 1 (𝜑𝐺𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   = wceq 1259   ∈ wcel 1409  ∀wral 2323  ∃wrex 2324   class class class wbr 3791  ‘cfv 4929  (class class class)co 5539  ℝcr 6945   < clt 7118   ≤ cle 7119   − cmin 7244  ℤcz 8301  ℤ≥cuz 8568  ℝ+crp 8680  abscabs 9823   ⇝ cli 10029 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-mulrcl 7040  ax-addcom 7041  ax-mulcom 7042  ax-addass 7043  ax-mulass 7044  ax-distr 7045  ax-i2m1 7046  ax-1rid 7048  ax-0id 7049  ax-rnegex 7050  ax-precex 7051  ax-cnre 7052  ax-pre-ltirr 7053  ax-pre-ltwlin 7054  ax-pre-lttrn 7055  ax-pre-apti 7056  ax-pre-ltadd 7057  ax-pre-mulgt0 7058  ax-pre-mulext 7059  ax-arch 7060  ax-caucvg 7061 This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-if 3359  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-frec 6008  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-sub 7246  df-neg 7247  df-reap 7639  df-ap 7646  df-div 7725  df-inn 7990  df-2 8048  df-3 8049  df-4 8050  df-n0 8239  df-z 8302  df-uz 8569  df-rp 8681  df-iseq 9375  df-iexp 9419  df-cj 9669  df-re 9670  df-im 9671  df-rsqrt 9824  df-abs 9825  df-clim 10030 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator