ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncongr2 GIF version

Theorem cncongr2 10693
Description: The other direction of the bicondition in cncongr 10694. (Contributed by AV, 11-Jul-2021.)
Assertion
Ref Expression
cncongr2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))

Proof of Theorem cncongr2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpll3 980 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → 𝐶 ∈ ℤ)
2 0z 8495 . . . . . . 7 0 ∈ ℤ
3 zdceq 8556 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝐶 = 0)
42, 3mpan2 416 . . . . . 6 (𝐶 ∈ ℤ → DECID 𝐶 = 0)
5 exmiddc 778 . . . . . 6 (DECID 𝐶 = 0 → (𝐶 = 0 ∨ ¬ 𝐶 = 0))
64, 5syl 14 . . . . 5 (𝐶 ∈ ℤ → (𝐶 = 0 ∨ ¬ 𝐶 = 0))
7 df-ne 2250 . . . . . 6 (𝐶 ≠ 0 ↔ ¬ 𝐶 = 0)
87orbi2i 712 . . . . 5 ((𝐶 = 0 ∨ 𝐶 ≠ 0) ↔ (𝐶 = 0 ∨ ¬ 𝐶 = 0))
96, 8sylibr 132 . . . 4 (𝐶 ∈ ℤ → (𝐶 = 0 ∨ 𝐶 ≠ 0))
10 zcn 8489 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
1110mul01d 7616 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (𝐴 · 0) = 0)
12113ad2ant1 960 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 0) = 0)
13 zcn 8489 . . . . . . . . . . . 12 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
1413mul01d 7616 . . . . . . . . . . 11 (𝐵 ∈ ℤ → (𝐵 · 0) = 0)
15143ad2ant2 961 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 0) = 0)
1612, 15eqtr4d 2118 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 0) = (𝐵 · 0))
1716adantr 270 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐴 · 0) = (𝐵 · 0))
1817oveq1d 5578 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 · 0) mod 𝑁) = ((𝐵 · 0) mod 𝑁))
1918adantr 270 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 0) mod 𝑁) = ((𝐵 · 0) mod 𝑁))
20 oveq2 5571 . . . . . . . 8 (𝐶 = 0 → (𝐴 · 𝐶) = (𝐴 · 0))
2120oveq1d 5578 . . . . . . 7 (𝐶 = 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐴 · 0) mod 𝑁))
22 oveq2 5571 . . . . . . . 8 (𝐶 = 0 → (𝐵 · 𝐶) = (𝐵 · 0))
2322oveq1d 5578 . . . . . . 7 (𝐶 = 0 → ((𝐵 · 𝐶) mod 𝑁) = ((𝐵 · 0) mod 𝑁))
2421, 23eqeq12d 2097 . . . . . 6 (𝐶 = 0 → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ ((𝐴 · 0) mod 𝑁) = ((𝐵 · 0) mod 𝑁)))
2519, 24syl5ibr 154 . . . . 5 (𝐶 = 0 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
26 oveq2 5571 . . . . . . . . . . . 12 (𝑀 = (𝑁 / (𝐶 gcd 𝑁)) → (𝐴 mod 𝑀) = (𝐴 mod (𝑁 / (𝐶 gcd 𝑁))))
27 oveq2 5571 . . . . . . . . . . . 12 (𝑀 = (𝑁 / (𝐶 gcd 𝑁)) → (𝐵 mod 𝑀) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁))))
2826, 27eqeq12d 2097 . . . . . . . . . . 11 (𝑀 = (𝑁 / (𝐶 gcd 𝑁)) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁)))))
2928adantl 271 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁)))))
3029adantl 271 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁)))))
31 simpl 107 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → 𝑁 ∈ ℕ)
32 simp3 941 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
33 divgcdnnr 10574 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐶 ∈ ℤ) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ)
3431, 32, 33syl2anr 284 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ)
35 simpl1 942 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝐴 ∈ ℤ)
36 simpl2 943 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝐵 ∈ ℤ)
37 moddvds 10412 . . . . . . . . . 10 (((𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁))) ↔ (𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴𝐵)))
3834, 35, 36, 37syl3anc 1170 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod (𝑁 / (𝐶 gcd 𝑁))) = (𝐵 mod (𝑁 / (𝐶 gcd 𝑁))) ↔ (𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴𝐵)))
3934nnzd 8601 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ)
40 zsubcl 8525 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
41403adant3 959 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
4241adantr 270 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐴𝐵) ∈ ℤ)
43 divides 10405 . . . . . . . . . 10 (((𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → ((𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴𝐵) ↔ ∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵)))
4439, 42, 43syl2anc 403 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝑁 / (𝐶 gcd 𝑁)) ∥ (𝐴𝐵) ↔ ∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵)))
4530, 38, 443bitrd 212 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵)))
46 simpr 108 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
4739adantr 270 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ)
4847adantr 270 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℤ)
4946, 48zmulcld 8608 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) ∈ ℤ)
5049zcnd 8603 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) ∈ ℂ)
5140zcnd 8603 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
52513adant3 959 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
5352ad3antrrr 476 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
5432zcnd 8603 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ)
5554ad3antrrr 476 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝐶 ∈ ℂ)
56 simpr 108 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → 𝐶 ≠ 0)
5756adantr 270 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝐶 ≠ 0)
5832ad3antrrr 476 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝐶 ∈ ℤ)
59 0zd 8496 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 0 ∈ ℤ)
60 zapne 8555 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐶 # 0 ↔ 𝐶 ≠ 0))
6158, 59, 60syl2anc 403 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (𝐶 # 0 ↔ 𝐶 ≠ 0))
6257, 61mpbird 165 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝐶 # 0)
6350, 53, 55, 62mulcanap2d 7871 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴𝐵) · 𝐶) ↔ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵)))
64 zcn 8489 . . . . . . . . . . . . . . . . 17 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
65 subdir 7609 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
6610, 13, 64, 65syl3an 1212 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
6766ad3antrrr 476 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → ((𝐴𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)))
6867eqeq2d 2094 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴𝐵) · 𝐶) ↔ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
6963, 68bitr3d 188 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) ↔ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
70 nnz 8503 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
7170adantr 270 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
72 simpr 108 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
7372zcnd 8603 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
7473adantl 271 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℂ)
7554adantr 270 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝐶 ∈ ℂ)
76 simpl 107 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℕ)
7776nnzd 8601 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
7832, 77anim12i 331 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ))
79 gcdcl 10565 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 gcd 𝑁) ∈ ℕ0)
8078, 79syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℕ0)
8180nn0cnd 8462 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℂ)
82 nnne0 8186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
8382neneqd 2270 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
8483adantr 270 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → ¬ 𝑁 = 0)
8584adantl 271 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ¬ 𝑁 = 0)
8685intnand 874 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ¬ (𝐶 = 0 ∧ 𝑁 = 0))
87 gcdeq0 10575 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐶 gcd 𝑁) = 0 ↔ (𝐶 = 0 ∧ 𝑁 = 0)))
8878, 87syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝐶 gcd 𝑁) = 0 ↔ (𝐶 = 0 ∧ 𝑁 = 0)))
8988necon3abid 2288 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝐶 gcd 𝑁) ≠ 0 ↔ ¬ (𝐶 = 0 ∧ 𝑁 = 0)))
9086, 89mpbird 165 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) ≠ 0)
9180nn0zd 8600 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℤ)
92 0zd 8496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 0 ∈ ℤ)
93 zapne 8555 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐶 gcd 𝑁) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐶 gcd 𝑁) # 0 ↔ (𝐶 gcd 𝑁) ≠ 0))
9491, 92, 93syl2anc 403 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝐶 gcd 𝑁) # 0 ↔ (𝐶 gcd 𝑁) ≠ 0))
9590, 94mpbird 165 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 gcd 𝑁) # 0)
9674, 75, 81, 95divassapd 8031 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝐶) / (𝐶 gcd 𝑁)) = (𝑘 · (𝐶 / (𝐶 gcd 𝑁))))
9772adantl 271 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ)
9870, 82jca 300 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
9998adantr 270 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
10032, 99anim12i 331 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)))
101 3anass 924 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ↔ (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)))
102100, 101sylibr 132 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
103 divgcdz 10570 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐶 / (𝐶 gcd 𝑁)) ∈ ℤ)
104102, 103syl 14 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝐶 / (𝐶 gcd 𝑁)) ∈ ℤ)
10597, 104zmulcld 8608 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝐶 / (𝐶 gcd 𝑁))) ∈ ℤ)
10696, 105eqeltrd 2159 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝐶) / (𝐶 gcd 𝑁)) ∈ ℤ)
107 dvdsmul1 10425 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℤ ∧ ((𝑘 · 𝐶) / (𝐶 gcd 𝑁)) ∈ ℤ) → 𝑁 ∥ (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁))))
10871, 106, 107syl2an2 559 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑁 ∥ (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁))))
10976nncnd 8172 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℂ)
110109adantl 271 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑁 ∈ ℂ)
111 divmulasscomap 7903 . . . . . . . . . . . . . . . . . . . . 21 (((𝑘 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐶 gcd 𝑁) ∈ ℂ ∧ (𝐶 gcd 𝑁) # 0)) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁))))
11274, 110, 75, 81, 95, 111syl32anc 1178 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = (𝑁 · ((𝑘 · 𝐶) / (𝐶 gcd 𝑁))))
113108, 112breqtrrd 3831 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ)) → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶))
114113exp32 357 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝑁 ∈ ℕ → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶))))
115114adantrd 273 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶))))
116115imp 122 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶)))
117116adantr 270 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (𝑘 ∈ ℤ → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶)))
118117imp 122 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → 𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶))
119 breq2 3809 . . . . . . . . . . . . . 14 (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝑁 ∥ ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
120118, 119syl5ibcom 153 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → (((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
12169, 120sylbid 148 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) ∧ 𝑘 ∈ ℤ) → ((𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
122121rexlimdva 2482 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
12331adantl 271 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ∈ ℕ)
124 zmulcl 8537 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℤ)
1251243adant2 958 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℤ)
126125adantr 270 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐴 · 𝐶) ∈ ℤ)
127 zmulcl 8537 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
1281273adant1 957 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
129128adantr 270 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐵 · 𝐶) ∈ ℤ)
130 moddvds 10412 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 · 𝐶) ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
131123, 126, 129, 130syl3anc 1170 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
132131adantr 270 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ 𝑁 ∥ ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
133122, 132sylibrd 167 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝐶 ≠ 0) → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
134133ex 113 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 ≠ 0 → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))))
135134com23 77 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (∃𝑘 ∈ ℤ (𝑘 · (𝑁 / (𝐶 gcd 𝑁))) = (𝐴𝐵) → (𝐶 ≠ 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))))
13645, 135sylbid 148 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → (𝐶 ≠ 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))))
137136imp 122 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → (𝐶 ≠ 0 → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
138137com12 30 . . . . 5 (𝐶 ≠ 0 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
13925, 138jaoi 669 . . . 4 ((𝐶 = 0 ∨ 𝐶 ≠ 0) → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
1409, 139syl 14 . . 3 (𝐶 ∈ ℤ → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
1411, 140mpcom 36 . 2 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))
142141ex 113 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662  DECID wdc 776  w3a 920   = wceq 1285  wcel 1434  wne 2249  wrex 2354   class class class wbr 3805  (class class class)co 5563  cc 7093  0cc0 7095   · cmul 7100  cmin 7398   # cap 7800   / cdiv 7879  cn 8158  0cn0 8407  cz 8484   mod cmo 9456  cdvds 10403   gcd cgcd 10545
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208  ax-arch 7209  ax-caucvg 7210
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-frec 6060  df-sup 6491  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-2 8217  df-3 8218  df-4 8219  df-n0 8408  df-z 8485  df-uz 8753  df-q 8838  df-rp 8868  df-fz 9158  df-fzo 9282  df-fl 9404  df-mod 9457  df-iseq 9574  df-iexp 9625  df-cj 9930  df-re 9931  df-im 9932  df-rsqrt 10085  df-abs 10086  df-dvds 10404  df-gcd 10546
This theorem is referenced by:  cncongr  10694
  Copyright terms: Public domain W3C validator