ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnegexlem3 GIF version

Theorem cnegexlem3 7221
Description: Existence of real number difference. Lemma for cnegex 7222. (Contributed by Eric Schmidt, 22-May-2007.)
Assertion
Ref Expression
cnegexlem3 ((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ∃𝑐 ∈ ℝ (𝑏 + 𝑐) = 𝑦)
Distinct variable group:   𝑏,𝑐,𝑦

Proof of Theorem cnegexlem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 readdcl 7035 . . . . . 6 ((𝑏 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑏 + 𝑥) ∈ ℝ)
2 ax-rnegex 7021 . . . . . 6 ((𝑏 + 𝑥) ∈ ℝ → ∃𝑐 ∈ ℝ ((𝑏 + 𝑥) + 𝑐) = 0)
31, 2syl 14 . . . . 5 ((𝑏 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ∃𝑐 ∈ ℝ ((𝑏 + 𝑥) + 𝑐) = 0)
43adantlr 454 . . . 4 (((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ∃𝑐 ∈ ℝ ((𝑏 + 𝑥) + 𝑐) = 0)
54adantr 265 . . 3 ((((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) → ∃𝑐 ∈ ℝ ((𝑏 + 𝑥) + 𝑐) = 0)
6 recn 7042 . . . . . . . 8 (𝑏 ∈ ℝ → 𝑏 ∈ ℂ)
7 recn 7042 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
86, 7anim12i 325 . . . . . . 7 ((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ))
98anim1i 327 . . . . . 6 (((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ))
109anim1i 327 . . . . 5 ((((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) → (((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0))
11 recn 7042 . . . . 5 (𝑐 ∈ ℝ → 𝑐 ∈ ℂ)
12 recn 7042 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
13 add32 7203 . . . . . . . . . . . 12 ((𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏 + 𝑥) + 𝑐) = ((𝑏 + 𝑐) + 𝑥))
14133expa 1113 . . . . . . . . . . 11 (((𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ 𝑐 ∈ ℂ) → ((𝑏 + 𝑥) + 𝑐) = ((𝑏 + 𝑐) + 𝑥))
15 addcl 7034 . . . . . . . . . . . . 13 ((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏 + 𝑐) ∈ ℂ)
16 addcom 7181 . . . . . . . . . . . . 13 (((𝑏 + 𝑐) ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑏 + 𝑐) + 𝑥) = (𝑥 + (𝑏 + 𝑐)))
1715, 16sylan 271 . . . . . . . . . . . 12 (((𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ∧ 𝑥 ∈ ℂ) → ((𝑏 + 𝑐) + 𝑥) = (𝑥 + (𝑏 + 𝑐)))
1817an32s 510 . . . . . . . . . . 11 (((𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ 𝑐 ∈ ℂ) → ((𝑏 + 𝑐) + 𝑥) = (𝑥 + (𝑏 + 𝑐)))
1914, 18eqtr2d 2087 . . . . . . . . . 10 (((𝑏 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ 𝑐 ∈ ℂ) → (𝑥 + (𝑏 + 𝑐)) = ((𝑏 + 𝑥) + 𝑐))
2012, 19sylanl2 389 . . . . . . . . 9 (((𝑏 ∈ ℂ ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ ℂ) → (𝑥 + (𝑏 + 𝑐)) = ((𝑏 + 𝑥) + 𝑐))
2120adantllr 458 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ ℂ) → (𝑥 + (𝑏 + 𝑐)) = ((𝑏 + 𝑥) + 𝑐))
2221adantlr 454 . . . . . . 7 (((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) ∧ 𝑐 ∈ ℂ) → (𝑥 + (𝑏 + 𝑐)) = ((𝑏 + 𝑥) + 𝑐))
23 addcom 7181 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
2423ancoms 259 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
2512, 24sylan2 274 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℝ) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
26 id 19 . . . . . . . . . 10 ((𝑦 + 𝑥) = 0 → (𝑦 + 𝑥) = 0)
2725, 26sylan9eq 2106 . . . . . . . . 9 (((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) → (𝑥 + 𝑦) = 0)
2827adantlll 457 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) → (𝑥 + 𝑦) = 0)
2928adantr 265 . . . . . . 7 (((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) ∧ 𝑐 ∈ ℂ) → (𝑥 + 𝑦) = 0)
3022, 29eqeq12d 2068 . . . . . 6 (((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) ∧ 𝑐 ∈ ℂ) → ((𝑥 + (𝑏 + 𝑐)) = (𝑥 + 𝑦) ↔ ((𝑏 + 𝑥) + 𝑐) = 0))
31 simplr 490 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ ℂ) → 𝑥 ∈ ℝ)
3215adantlr 454 . . . . . . . . 9 (((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑐 ∈ ℂ) → (𝑏 + 𝑐) ∈ ℂ)
3332adantlr 454 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ ℂ) → (𝑏 + 𝑐) ∈ ℂ)
34 simpllr 494 . . . . . . . 8 ((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ ℂ) → 𝑦 ∈ ℂ)
35 cnegexlem1 7219 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ (𝑏 + 𝑐) ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 + (𝑏 + 𝑐)) = (𝑥 + 𝑦) ↔ (𝑏 + 𝑐) = 𝑦))
3631, 33, 34, 35syl3anc 1144 . . . . . . 7 ((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ 𝑐 ∈ ℂ) → ((𝑥 + (𝑏 + 𝑐)) = (𝑥 + 𝑦) ↔ (𝑏 + 𝑐) = 𝑦))
3736adantlr 454 . . . . . 6 (((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) ∧ 𝑐 ∈ ℂ) → ((𝑥 + (𝑏 + 𝑐)) = (𝑥 + 𝑦) ↔ (𝑏 + 𝑐) = 𝑦))
3830, 37bitr3d 183 . . . . 5 (((((𝑏 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) ∧ 𝑐 ∈ ℂ) → (((𝑏 + 𝑥) + 𝑐) = 0 ↔ (𝑏 + 𝑐) = 𝑦))
3910, 11, 38syl2an 277 . . . 4 (((((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) ∧ 𝑐 ∈ ℝ) → (((𝑏 + 𝑥) + 𝑐) = 0 ↔ (𝑏 + 𝑐) = 𝑦))
4039rexbidva 2338 . . 3 ((((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) → (∃𝑐 ∈ ℝ ((𝑏 + 𝑥) + 𝑐) = 0 ↔ ∃𝑐 ∈ ℝ (𝑏 + 𝑐) = 𝑦))
415, 40mpbid 139 . 2 ((((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 + 𝑥) = 0) → ∃𝑐 ∈ ℝ (𝑏 + 𝑐) = 𝑦)
42 ax-rnegex 7021 . . 3 (𝑦 ∈ ℝ → ∃𝑥 ∈ ℝ (𝑦 + 𝑥) = 0)
4342adantl 266 . 2 ((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ∃𝑥 ∈ ℝ (𝑦 + 𝑥) = 0)
4441, 43r19.29a 2469 1 ((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ∃𝑐 ∈ ℝ (𝑏 + 𝑐) = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1257  wcel 1407  wrex 2322  (class class class)co 5537  cc 6915  cr 6916  0cc0 6917   + caddc 6920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-resscn 7004  ax-1cn 7005  ax-icn 7007  ax-addcl 7008  ax-addrcl 7009  ax-mulcl 7010  ax-addcom 7012  ax-addass 7014  ax-i2m1 7017  ax-0id 7020  ax-rnegex 7021
This theorem depends on definitions:  df-bi 114  df-3an 896  df-tru 1260  df-nf 1364  df-sb 1660  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ral 2326  df-rex 2327  df-v 2574  df-un 2947  df-in 2949  df-ss 2956  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-br 3790  df-iota 4892  df-fv 4935  df-ov 5540
This theorem is referenced by:  cnegex  7222
  Copyright terms: Public domain W3C validator