ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnveqd GIF version

Theorem cnveqd 4536
Description: Equality deduction for converse. (Contributed by NM, 6-Dec-2013.)
Hypothesis
Ref Expression
cnveqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
cnveqd (𝜑𝐴 = 𝐵)

Proof of Theorem cnveqd
StepHypRef Expression
1 cnveqd.1 . 2 (𝜑𝐴 = 𝐵)
2 cnveq 4534 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
31, 2syl 14 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1257  ccnv 4369
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036
This theorem depends on definitions:  df-bi 114  df-nf 1364  df-sb 1660  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-in 2949  df-ss 2956  df-br 3790  df-opab 3844  df-cnv 4378
This theorem is referenced by:  cnvsng  4831  cores2  4858  suppssof1  5753  2ndval2  5808  2nd1st  5831  cnvf1olem  5870  brtpos2  5894  dftpos4  5906  tpostpos  5907  tposf12  5912  xpcomco  6328
  Copyright terms: Public domain W3C validator