ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvoprab GIF version

Theorem cnvoprab 5883
Description: The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.)
Hypotheses
Ref Expression
cnvoprab.x 𝑥𝜓
cnvoprab.y 𝑦𝜓
cnvoprab.1 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
cnvoprab.2 (𝜓𝑎 ∈ (V × V))
Assertion
Ref Expression
cnvoprab {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑎,𝑦,𝑧   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧,𝑎)

Proof of Theorem cnvoprab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 excom 1570 . . . . . 6 (∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑧𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
2 nfv 1437 . . . . . . . . . . 11 𝑥 𝑤 = ⟨𝑎, 𝑧
3 cnvoprab.x . . . . . . . . . . 11 𝑥𝜓
42, 3nfan 1473 . . . . . . . . . 10 𝑥(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
54nfex 1544 . . . . . . . . 9 𝑥𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
6 nfv 1437 . . . . . . . . . . . 12 𝑦 𝑤 = ⟨𝑎, 𝑧
7 cnvoprab.y . . . . . . . . . . . 12 𝑦𝜓
86, 7nfan 1473 . . . . . . . . . . 11 𝑦(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
98nfex 1544 . . . . . . . . . 10 𝑦𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
10 vex 2577 . . . . . . . . . . . 12 𝑥 ∈ V
11 vex 2577 . . . . . . . . . . . 12 𝑦 ∈ V
1210, 11opex 3994 . . . . . . . . . . 11 𝑥, 𝑦⟩ ∈ V
13 opeq1 3577 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑥, 𝑦⟩ → ⟨𝑎, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
1413eqeq2d 2067 . . . . . . . . . . . 12 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝑤 = ⟨𝑎, 𝑧⟩ ↔ 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
15 cnvoprab.1 . . . . . . . . . . . 12 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
1614, 15anbi12d 450 . . . . . . . . . . 11 (𝑎 = ⟨𝑥, 𝑦⟩ → ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) ↔ (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
1712, 16spcev 2664 . . . . . . . . . 10 ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
189, 17exlimi 1501 . . . . . . . . 9 (∃𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
195, 18exlimi 1501 . . . . . . . 8 (∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
20 cnvoprab.2 . . . . . . . . . . 11 (𝜓𝑎 ∈ (V × V))
2120adantl 266 . . . . . . . . . 10 ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → 𝑎 ∈ (V × V))
22 vex 2577 . . . . . . . . . . . 12 𝑎 ∈ V
23 1stexg 5822 . . . . . . . . . . . 12 (𝑎 ∈ V → (1st𝑎) ∈ V)
2422, 23ax-mp 7 . . . . . . . . . . 11 (1st𝑎) ∈ V
25 2ndexg 5823 . . . . . . . . . . . 12 (𝑎 ∈ V → (2nd𝑎) ∈ V)
2622, 25ax-mp 7 . . . . . . . . . . 11 (2nd𝑎) ∈ V
27 eqcom 2058 . . . . . . . . . . . . . . 15 ((1st𝑎) = 𝑥𝑥 = (1st𝑎))
28 eqcom 2058 . . . . . . . . . . . . . . 15 ((2nd𝑎) = 𝑦𝑦 = (2nd𝑎))
2927, 28anbi12i 441 . . . . . . . . . . . . . 14 (((1st𝑎) = 𝑥 ∧ (2nd𝑎) = 𝑦) ↔ (𝑥 = (1st𝑎) ∧ 𝑦 = (2nd𝑎)))
30 eqopi 5826 . . . . . . . . . . . . . 14 ((𝑎 ∈ (V × V) ∧ ((1st𝑎) = 𝑥 ∧ (2nd𝑎) = 𝑦)) → 𝑎 = ⟨𝑥, 𝑦⟩)
3129, 30sylan2br 276 . . . . . . . . . . . . 13 ((𝑎 ∈ (V × V) ∧ (𝑥 = (1st𝑎) ∧ 𝑦 = (2nd𝑎))) → 𝑎 = ⟨𝑥, 𝑦⟩)
3216bicomd 133 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑥, 𝑦⟩ → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)))
3331, 32syl 14 . . . . . . . . . . . 12 ((𝑎 ∈ (V × V) ∧ (𝑥 = (1st𝑎) ∧ 𝑦 = (2nd𝑎))) → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)))
344, 8, 33spc2ed 5882 . . . . . . . . . . 11 ((𝑎 ∈ (V × V) ∧ ((1st𝑎) ∈ V ∧ (2nd𝑎) ∈ V)) → ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
3524, 26, 34mpanr12 423 . . . . . . . . . 10 (𝑎 ∈ (V × V) → ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
3621, 35mpcom 36 . . . . . . . . 9 ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
3736exlimiv 1505 . . . . . . . 8 (∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
3819, 37impbii 121 . . . . . . 7 (∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
3938exbii 1512 . . . . . 6 (∃𝑧𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
40 exrot3 1596 . . . . . 6 (∃𝑧𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
411, 39, 403bitr2ri 202 . . . . 5 (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
4241abbii 2169 . . . 4 {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)}
43 df-oprab 5544 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
44 df-opab 3847 . . . 4 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {𝑤 ∣ ∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)}
4542, 43, 443eqtr4ri 2087 . . 3 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
4645cnveqi 4538 . 2 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
47 cnvopab 4754 . 2 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
4846, 47eqtr3i 2078 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wnf 1365  wex 1397  wcel 1409  {cab 2042  Vcvv 2574  cop 3406  {copab 3845   × cxp 4371  ccnv 4372  cfv 4930  {coprab 5541  1st c1st 5793  2nd c2nd 5794
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-fo 4936  df-fv 4938  df-oprab 5544  df-1st 5795  df-2nd 5796
This theorem is referenced by:  f1od2  5884
  Copyright terms: Public domain W3C validator