![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvss | GIF version |
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
cnvss | ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 2994 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (〈𝑦, 𝑥〉 ∈ 𝐴 → 〈𝑦, 𝑥〉 ∈ 𝐵)) | |
2 | df-br 3794 | . . . 4 ⊢ (𝑦𝐴𝑥 ↔ 〈𝑦, 𝑥〉 ∈ 𝐴) | |
3 | df-br 3794 | . . . 4 ⊢ (𝑦𝐵𝑥 ↔ 〈𝑦, 𝑥〉 ∈ 𝐵) | |
4 | 1, 2, 3 | 3imtr4g 203 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑦𝐴𝑥 → 𝑦𝐵𝑥)) |
5 | 4 | ssopab2dv 4041 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
6 | df-cnv 4379 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
7 | df-cnv 4379 | . 2 ⊢ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥} | |
8 | 5, 6, 7 | 3sstr4g 3041 | 1 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1434 ⊆ wss 2974 〈cop 3409 class class class wbr 3793 {copab 3846 ◡ccnv 4370 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-in 2980 df-ss 2987 df-br 3794 df-opab 3848 df-cnv 4379 |
This theorem is referenced by: cnveq 4537 rnss 4592 relcnvtr 4870 funss 4950 funcnvuni 4999 funres11 5002 funcnvres 5003 foimacnv 5175 tposss 5895 |
Copyright terms: Public domain | W3C validator |