ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  codir GIF version

Theorem codir 4897
Description: Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
codir ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑥𝑅𝑧𝑦𝑅𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧

Proof of Theorem codir
StepHypRef Expression
1 opelxp 4539 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
2 df-br 3900 . . . . 5 (𝑥(𝑅𝑅)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅))
3 vex 2663 . . . . . 6 𝑥 ∈ V
4 vex 2663 . . . . . 6 𝑦 ∈ V
5 brcodir 4896 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅𝑅)𝑦 ↔ ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧)))
63, 4, 5mp2an 422 . . . . 5 (𝑥(𝑅𝑅)𝑦 ↔ ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧))
72, 6bitr3i 185 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅) ↔ ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧))
81, 7imbi12i 238 . . 3 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)) ↔ ((𝑥𝐴𝑦𝐵) → ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧)))
982albii 1432 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧)))
10 relxp 4618 . . 3 Rel (𝐴 × 𝐵)
11 ssrel 4597 . . 3 (Rel (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅))))
1210, 11ax-mp 5 . 2 ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝑅𝑅)))
13 r2al 2431 . 2 (∀𝑥𝐴𝑦𝐵𝑧(𝑥𝑅𝑧𝑦𝑅𝑧) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ∃𝑧(𝑥𝑅𝑧𝑦𝑅𝑧)))
149, 12, 133bitr4i 211 1 ((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑥𝑅𝑧𝑦𝑅𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1314  wex 1453  wcel 1465  wral 2393  Vcvv 2660  wss 3041  cop 3500   class class class wbr 3899   × cxp 4507  ccnv 4508  ccom 4513  Rel wrel 4514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-v 2662  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-br 3900  df-opab 3960  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator