![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > coeq12i | GIF version |
Description: Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.) |
Ref | Expression |
---|---|
coeq12i.1 | ⊢ 𝐴 = 𝐵 |
coeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
coeq12i | ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | coeq1i 4543 | . 2 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
3 | coeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | coeq2i 4544 | . 2 ⊢ (𝐵 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
5 | 2, 4 | eqtri 2103 | 1 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 ∘ ccom 4395 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-in 2988 df-ss 2995 df-br 3806 df-opab 3860 df-co 4400 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |