ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com4r GIF version

Theorem com4r 84
Description: Commutation of antecedents. Rotate right. (Contributed by NM, 25-Apr-1994.)
Hypothesis
Ref Expression
com4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
com4r (𝜃 → (𝜑 → (𝜓 → (𝜒𝜏))))

Proof of Theorem com4r
StepHypRef Expression
1 com4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21com4t 83 . 2 (𝜒 → (𝜃 → (𝜑 → (𝜓𝜏))))
32com4l 82 1 (𝜃 → (𝜑 → (𝜓 → (𝜒𝜏))))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7
This theorem is referenced by:  com15  91  3expd  1132  tfrlem9  5966  nndi  6096  mulcanpig  6491
  Copyright terms: Public domain W3C validator