![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > con2i | GIF version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
Ref | Expression |
---|---|
con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
con2i | ⊢ (𝜓 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
3 | 1, 2 | nsyl3 589 | 1 ⊢ (𝜓 → ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-in1 577 ax-in2 578 |
This theorem is referenced by: nsyl 591 notnot 592 imnan 657 ioran 702 pm3.1 704 imanim 819 pm4.53r 838 oranim 841 xornbi 1318 exalim 1432 exnalim 1578 festino 2049 calemes 2059 fresison 2061 calemos 2062 fesapo 2063 nner 2253 necon2ai 2303 necon2bi 2304 neneqad 2328 ralexim 2365 rexalim 2366 eueq3dc 2775 elndif 3106 ssddif 3214 unssdif 3215 n0i 3272 preleq 4326 dmsn0el 4840 funtpg 5001 ftpg 5400 acexmidlemab 5558 reldmtpos 5923 nntri2 6159 nntri3 6162 nndceq 6164 inffiexmid 6458 elni2 6636 renfdisj 7309 fzdisj 9217 isumrblem 10418 |
Copyright terms: Public domain | W3C validator |