ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coundi GIF version

Theorem coundi 4849
Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
coundi (𝐴 ∘ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem coundi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopab 3863 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦))}
2 brun 3837 . . . . . . . 8 (𝑥(𝐵𝐶)𝑧 ↔ (𝑥𝐵𝑧𝑥𝐶𝑧))
32anbi1i 439 . . . . . . 7 ((𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧𝑥𝐶𝑧) ∧ 𝑧𝐴𝑦))
4 andir 743 . . . . . . 7 (((𝑥𝐵𝑧𝑥𝐶𝑧) ∧ 𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧𝑧𝐴𝑦)))
53, 4bitri 177 . . . . . 6 ((𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦) ↔ ((𝑥𝐵𝑧𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧𝑧𝐴𝑦)))
65exbii 1512 . . . . 5 (∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦) ↔ ∃𝑧((𝑥𝐵𝑧𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧𝑧𝐴𝑦)))
7 19.43 1535 . . . . 5 (∃𝑧((𝑥𝐵𝑧𝑧𝐴𝑦) ∨ (𝑥𝐶𝑧𝑧𝐴𝑦)) ↔ (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)))
86, 7bitr2i 178 . . . 4 ((∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)) ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
98opabbii 3851 . . 3 {⟨𝑥, 𝑦⟩ ∣ (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ∨ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦)}
101, 9eqtri 2076 . 2 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦)}
11 df-co 4381 . . 3 (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
12 df-co 4381 . . 3 (𝐴𝐶) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)}
1311, 12uneq12i 3122 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)} ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐶𝑧𝑧𝐴𝑦)})
14 df-co 4381 . 2 (𝐴 ∘ (𝐵𝐶)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦)}
1510, 13, 143eqtr4ri 2087 1 (𝐴 ∘ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  wa 101  wo 639   = wceq 1259  wex 1397  cun 2942   class class class wbr 3791  {copab 3844  ccom 4376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2949  df-br 3792  df-opab 3846  df-co 4381
This theorem is referenced by:  relcoi1  4876
  Copyright terms: Public domain W3C validator