ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cru GIF version

Theorem cru 7805
Description: The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
cru (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem cru
StepHypRef Expression
1 simplrl 502 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐶 ∈ ℝ)
21recnd 7245 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐶 ∈ ℂ)
3 simplll 500 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐴 ∈ ℝ)
43recnd 7245 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐴 ∈ ℂ)
5 simpr 108 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)))
6 ax-icn 7169 . . . . . . . . . . 11 i ∈ ℂ
76a1i 9 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → i ∈ ℂ)
8 simpllr 501 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐵 ∈ ℝ)
98recnd 7245 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐵 ∈ ℂ)
107, 9mulcld 7237 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · 𝐵) ∈ ℂ)
11 simplrr 503 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐷 ∈ ℝ)
1211recnd 7245 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐷 ∈ ℂ)
137, 12mulcld 7237 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · 𝐷) ∈ ℂ)
144, 10, 2, 13addsubeq4d 7573 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐶𝐴) = ((i · 𝐵) − (i · 𝐷))))
155, 14mpbid 145 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐶𝐴) = ((i · 𝐵) − (i · 𝐷)))
168, 11resubcld 7588 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐵𝐷) ∈ ℝ)
177, 9, 12subdid 7621 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · (𝐵𝐷)) = ((i · 𝐵) − (i · 𝐷)))
1817, 15eqtr4d 2118 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · (𝐵𝐷)) = (𝐶𝐴))
191, 3resubcld 7588 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐶𝐴) ∈ ℝ)
2018, 19eqeltrd 2159 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · (𝐵𝐷)) ∈ ℝ)
21 rimul 7788 . . . . . . . . . . 11 (((𝐵𝐷) ∈ ℝ ∧ (i · (𝐵𝐷)) ∈ ℝ) → (𝐵𝐷) = 0)
2216, 20, 21syl2anc 403 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐵𝐷) = 0)
239, 12, 22subeq0d 7530 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐵 = 𝐷)
2423oveq2d 5580 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · 𝐵) = (i · 𝐷))
2524oveq1d 5579 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → ((i · 𝐵) − (i · 𝐷)) = ((i · 𝐷) − (i · 𝐷)))
2613subidd 7510 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → ((i · 𝐷) − (i · 𝐷)) = 0)
2715, 25, 263eqtrd 2119 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐶𝐴) = 0)
282, 4, 27subeq0d 7530 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐶 = 𝐴)
2928eqcomd 2088 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐴 = 𝐶)
3029, 23jca 300 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐴 = 𝐶𝐵 = 𝐷))
3130ex 113 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))
32 oveq2 5572 . . 3 (𝐵 = 𝐷 → (i · 𝐵) = (i · 𝐷))
33 oveq12 5573 . . 3 ((𝐴 = 𝐶 ∧ (i · 𝐵) = (i · 𝐷)) → (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)))
3432, 33sylan2 280 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)))
3531, 34impbid1 140 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434  (class class class)co 5564  cc 7077  cr 7078  0cc0 7079  ici 7081   + caddc 7082   · cmul 7084  cmin 7382
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-cnex 7165  ax-resscn 7166  ax-1cn 7167  ax-1re 7168  ax-icn 7169  ax-addcl 7170  ax-addrcl 7171  ax-mulcl 7172  ax-mulrcl 7173  ax-addcom 7174  ax-mulcom 7175  ax-addass 7176  ax-mulass 7177  ax-distr 7178  ax-i2m1 7179  ax-0lt1 7180  ax-1rid 7181  ax-0id 7182  ax-rnegex 7183  ax-precex 7184  ax-cnre 7185  ax-pre-ltirr 7186  ax-pre-lttrn 7188  ax-pre-apti 7189  ax-pre-ltadd 7190  ax-pre-mulgt0 7191
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2826  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-br 3807  df-opab 3861  df-id 4077  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-iota 4918  df-fun 4955  df-fv 4961  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-pnf 7253  df-mnf 7254  df-ltxr 7256  df-sub 7384  df-neg 7385  df-reap 7778
This theorem is referenced by:  apreim  7806  apti  7825  creur  8139  creui  8140  cnref1o  8850
  Copyright terms: Public domain W3C validator