ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csb2 GIF version

Theorem csb2 2882
Description: Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that 𝑥 can be free in 𝐵 but cannot occur in 𝐴. (Contributed by NM, 2-Dec-2013.)
Assertion
Ref Expression
csb2 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴𝑦𝐵)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem csb2
StepHypRef Expression
1 df-csb 2881 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 sbc5 2810 . . 3 ([𝐴 / 𝑥]𝑦𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑦𝐵))
32abbii 2169 . 2 {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴𝑦𝐵)}
41, 3eqtri 2076 1 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑥(𝑥 = 𝐴𝑦𝐵)}
Colors of variables: wff set class
Syntax hints:  wa 101   = wceq 1259  wex 1397  wcel 1409  {cab 2042  [wsbc 2787  csb 2880
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-sbc 2788  df-csb 2881
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator