ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbcnvg GIF version

Theorem csbcnvg 4567
Description: Move class substitution in and out of the converse of a function. (Contributed by Thierry Arnoux, 8-Feb-2017.)
Assertion
Ref Expression
csbcnvg (𝐴𝑉𝐴 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)

Proof of Theorem csbcnvg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbcbrg 3854 . . . . 5 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧𝐹𝑦𝐴 / 𝑥𝑧𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦))
2 csbconstg 2929 . . . . . 6 (𝐴𝑉𝐴 / 𝑥𝑧 = 𝑧)
3 csbconstg 2929 . . . . . 6 (𝐴𝑉𝐴 / 𝑥𝑦 = 𝑦)
42, 3breq12d 3818 . . . . 5 (𝐴𝑉 → (𝐴 / 𝑥𝑧𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦𝑧𝐴 / 𝑥𝐹𝑦))
51, 4bitrd 186 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧𝐹𝑦𝑧𝐴 / 𝑥𝐹𝑦))
65opabbidv 3864 . . 3 (𝐴𝑉 → {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝑧𝐹𝑦} = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐴 / 𝑥𝐹𝑦})
7 csbopabg 3876 . . 3 (𝐴𝑉𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝑧𝐹𝑦})
8 df-cnv 4399 . . . 4 𝐴 / 𝑥𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐴 / 𝑥𝐹𝑦}
98a1i 9 . . 3 (𝐴𝑉𝐴 / 𝑥𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐴 / 𝑥𝐹𝑦})
106, 7, 93eqtr4rd 2126 . 2 (𝐴𝑉𝐴 / 𝑥𝐹 = 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦})
11 df-cnv 4399 . . 3 𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦}
1211csbeq2i 2941 . 2 𝐴 / 𝑥𝐹 = 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦}
1310, 12syl6eqr 2133 1 (𝐴𝑉𝐴 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1285  wcel 1434  [wsbc 2824  csb 2917   class class class wbr 3805  {copab 3858  ccnv 4390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612  df-sbc 2825  df-csb 2918  df-un 2986  df-sn 3422  df-pr 3423  df-op 3425  df-br 3806  df-opab 3860  df-cnv 4399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator