![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > dcdc | GIF version |
Description: Decidability of a proposition is decidable if and only if that proposition is decidable. DECID is idempotent. (Contributed by BJ, 9-Oct-2019.) |
Ref | Expression |
---|---|
dcdc | ⊢ (DECID DECID 𝜑 ↔ DECID 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 777 | . 2 ⊢ (DECID DECID 𝜑 ↔ (DECID 𝜑 ∨ ¬ DECID 𝜑)) | |
2 | nndc 10722 | . . 3 ⊢ ¬ ¬ DECID 𝜑 | |
3 | 2 | biorfi 698 | . 2 ⊢ (DECID 𝜑 ↔ (DECID 𝜑 ∨ ¬ DECID 𝜑)) |
4 | 1, 3 | bitr4i 185 | 1 ⊢ (DECID DECID 𝜑 ↔ DECID 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 103 ∨ wo 662 DECID wdc 776 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 |
This theorem depends on definitions: df-bi 115 df-dc 777 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |