ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decaddc GIF version

Theorem decaddc 8451
Description: Add two numerals 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decma.a 𝐴 ∈ ℕ0
decma.b 𝐵 ∈ ℕ0
decma.c 𝐶 ∈ ℕ0
decma.d 𝐷 ∈ ℕ0
decma.m 𝑀 = 𝐴𝐵
decma.n 𝑁 = 𝐶𝐷
decaddc.e ((𝐴 + 𝐶) + 1) = 𝐸
decaddc.f 𝐹 ∈ ℕ0
decaddc.2 (𝐵 + 𝐷) = 1𝐹
Assertion
Ref Expression
decaddc (𝑀 + 𝑁) = 𝐸𝐹

Proof of Theorem decaddc
StepHypRef Expression
1 10nn0 8414 . . 3 10 ∈ ℕ0
2 decma.a . . 3 𝐴 ∈ ℕ0
3 decma.b . . 3 𝐵 ∈ ℕ0
4 decma.c . . 3 𝐶 ∈ ℕ0
5 decma.d . . 3 𝐷 ∈ ℕ0
6 decma.m . . . 4 𝑀 = 𝐴𝐵
7 dfdec10 8400 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
86, 7eqtri 2074 . . 3 𝑀 = ((10 · 𝐴) + 𝐵)
9 decma.n . . . 4 𝑁 = 𝐶𝐷
10 dfdec10 8400 . . . 4 𝐶𝐷 = ((10 · 𝐶) + 𝐷)
119, 10eqtri 2074 . . 3 𝑁 = ((10 · 𝐶) + 𝐷)
12 decaddc.f . . 3 𝐹 ∈ ℕ0
13 decaddc.e . . 3 ((𝐴 + 𝐶) + 1) = 𝐸
14 decaddc.2 . . . 4 (𝐵 + 𝐷) = 1𝐹
15 dfdec10 8400 . . . 4 1𝐹 = ((10 · 1) + 𝐹)
1614, 15eqtri 2074 . . 3 (𝐵 + 𝐷) = ((10 · 1) + 𝐹)
171, 2, 3, 4, 5, 8, 11, 12, 13, 16numaddc 8444 . 2 (𝑀 + 𝑁) = ((10 · 𝐸) + 𝐹)
18 dfdec10 8400 . 2 𝐸𝐹 = ((10 · 𝐸) + 𝐹)
1917, 18eqtr4i 2077 1 (𝑀 + 𝑁) = 𝐸𝐹
Colors of variables: wff set class
Syntax hints:   = wceq 1257  wcel 1407  (class class class)co 5537  0cc0 6917  1c1 6918   + caddc 6920   · cmul 6922  0cn0 8209  cdc 8397
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-sep 3900  ax-pow 3952  ax-pr 3969  ax-setind 4287  ax-cnex 7003  ax-resscn 7004  ax-1cn 7005  ax-1re 7006  ax-icn 7007  ax-addcl 7008  ax-addrcl 7009  ax-mulcl 7010  ax-addcom 7012  ax-mulcom 7013  ax-addass 7014  ax-mulass 7015  ax-distr 7016  ax-i2m1 7017  ax-1rid 7019  ax-0id 7020  ax-rnegex 7021  ax-cnre 7023
This theorem depends on definitions:  df-bi 114  df-3an 896  df-tru 1260  df-fal 1263  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ne 2219  df-ral 2326  df-rex 2327  df-reu 2328  df-rab 2330  df-v 2574  df-sbc 2785  df-dif 2945  df-un 2947  df-in 2949  df-ss 2956  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-int 3641  df-br 3790  df-opab 3844  df-id 4055  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-iota 4892  df-fun 4929  df-fv 4935  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-sub 7217  df-inn 7961  df-2 8019  df-3 8020  df-4 8021  df-5 8022  df-6 8023  df-7 8024  df-8 8025  df-9 8026  df-n0 8210  df-dec 8398
This theorem is referenced by:  decaddc2  8452  decaddci  8457
  Copyright terms: Public domain W3C validator