Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedlemb GIF version

Theorem dedlemb 876
 Description: Lemma for iffalse 3333. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Assertion
Ref Expression
dedlemb φ → (χ ↔ ((ψ φ) (χ ¬ φ))))

Proof of Theorem dedlemb
StepHypRef Expression
1 olc 631 . . 3 ((χ ¬ φ) → ((ψ φ) (χ ¬ φ)))
21expcom 109 . 2 φ → (χ → ((ψ φ) (χ ¬ φ))))
3 pm2.21 547 . . . 4 φ → (φχ))
43adantld 263 . . 3 φ → ((ψ φ) → χ))
5 simpl 102 . . . 4 ((χ ¬ φ) → χ)
65a1i 9 . . 3 φ → ((χ ¬ φ) → χ))
74, 6jaod 636 . 2 φ → (((ψ φ) (χ ¬ φ)) → χ))
82, 7impbid 120 1 φ → (χ ↔ ((ψ φ) (χ ¬ φ))))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 97   ↔ wb 98   ∨ wo 628 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 545  ax-io 629 This theorem depends on definitions:  df-bi 110 This theorem is referenced by:  iffalse  3333
 Copyright terms: Public domain W3C validator