Detailed syntax breakdown of Definition df-iexp
Step | Hyp | Ref
| Expression |
1 | | cexp 8908 |
. 2
class ↑ |
2 | | vx |
. . 3
setvar x |
3 | | vy |
. . 3
setvar y |
4 | | cc 6709 |
. . 3
class ℂ |
5 | | cz 8021 |
. . 3
class ℤ |
6 | 3 | cv 1241 |
. . . . 5
class y |
7 | | cc0 6711 |
. . . . 5
class 0 |
8 | 6, 7 | wceq 1242 |
. . . 4
wff y = 0 |
9 | | c1 6712 |
. . . 4
class 1 |
10 | | clt 6857 |
. . . . . 6
class < |
11 | 7, 6, 10 | wbr 3755 |
. . . . 5
wff 0 < y |
12 | | cmul 6716 |
. . . . . . 7
class · |
13 | | cn 7695 |
. . . . . . . 8
class ℕ |
14 | 2 | cv 1241 |
. . . . . . . . 9
class x |
15 | 14 | csn 3367 |
. . . . . . . 8
class {x} |
16 | 13, 15 | cxp 4286 |
. . . . . . 7
class (ℕ × {x}) |
17 | 12, 4, 16, 9 | cseq 8892 |
. . . . . 6
class seq1( · , (ℕ
× {x}), ℂ) |
18 | 6, 17 | cfv 4845 |
. . . . 5
class (seq1( · , (ℕ
× {x}), ℂ)‘y) |
19 | 6 | cneg 6980 |
. . . . . . 7
class -y |
20 | 19, 17 | cfv 4845 |
. . . . . 6
class (seq1( · , (ℕ
× {x}), ℂ)‘-y) |
21 | | cdiv 7433 |
. . . . . 6
class / |
22 | 9, 20, 21 | co 5455 |
. . . . 5
class (1 / (seq1( · ,
(ℕ × {x}),
ℂ)‘-y)) |
23 | 11, 18, 22 | cif 3325 |
. . . 4
class if(0 < y, (seq1( · , (ℕ × {x}), ℂ)‘y), (1 / (seq1( · , (ℕ ×
{x}), ℂ)‘-y))) |
24 | 8, 9, 23 | cif 3325 |
. . 3
class if(y = 0, 1, if(0 < y, (seq1( · , (ℕ × {x}), ℂ)‘y), (1 / (seq1( · , (ℕ ×
{x}), ℂ)‘-y)))) |
25 | 2, 3, 4, 5, 24 | cmpt2 5457 |
. 2
class (x ∈ ℂ,
y ∈
ℤ ↦ if(y = 0, 1, if(0 <
y, (seq1( · , (ℕ ×
{x}), ℂ)‘y), (1 / (seq1( · , (ℕ ×
{x}), ℂ)‘-y))))) |
26 | 1, 25 | wceq 1242 |
1
wff ↑ = (x ∈ ℂ,
y ∈
ℤ ↦ if(y = 0, 1, if(0 <
y, (seq1( · , (ℕ ×
{x}), ℂ)‘y), (1 / (seq1( · , (ℕ ×
{x}), ℂ)‘-y))))) |