Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfbi3 GIF version

Theorem dfbi3 825
 Description: An alternate definition of the biconditional. Theorem *5.23 of [WhiteheadRussell] p. 124. (The proof was shortened by Wolf Lammen, 3-Nov-2013.)
Assertion
Ref Expression
dfbi3 ((φψ) ↔ ((φ ψ) φ ¬ ψ)))

Proof of Theorem dfbi3
StepHypRef Expression
1 xor 823 . 2 (¬ (φ ↔ ¬ ψ) ↔ ((φ ¬ ¬ ψ) ψ ¬ φ)))
2 pm5.18 770 . 2 ((φψ) ↔ ¬ (φ ↔ ¬ ψ))
3 notnot 758 . . . 4 (ψ ↔ ¬ ¬ ψ)
43anbi2i 431 . . 3 ((φ ψ) ↔ (φ ¬ ¬ ψ))
5 ancom 252 . . 3 ((¬ φ ¬ ψ) ↔ (¬ ψ ¬ φ))
64, 5orbi12i 657 . 2 (((φ ψ) φ ¬ ψ)) ↔ ((φ ¬ ¬ ψ) ψ ¬ φ)))
71, 2, 63bitr4i 200 1 ((φψ) ↔ ((φ ψ) φ ¬ ψ)))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   ∧ wa 96   ↔ wb 97   ∨ wo 606 This theorem is referenced by:  pm5.24  826  4exmid  874  nic-justbi  1284 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-ia1 98  ax-ia2 99  ax-ia3 100  ax-in1 527  ax-in2 528  ax-io 607 This theorem depends on definitions:  df-bi 109
 Copyright terms: Public domain W3C validator