Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfco2 GIF version

Theorem dfco2 4848
 Description: Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008.)
Assertion
Ref Expression
dfco2 (𝐴𝐵) = 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfco2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 4847 . 2 Rel (𝐴𝐵)
2 reliun 4486 . . 3 (Rel 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∀𝑥 ∈ V Rel ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
3 relxp 4475 . . . 4 Rel ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
43a1i 9 . . 3 (𝑥 ∈ V → Rel ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
52, 4mprgbir 2396 . 2 Rel 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
6 vex 2577 . . . 4 𝑦 ∈ V
7 vex 2577 . . . 4 𝑧 ∈ V
8 opelco2g 4531 . . . 4 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴)))
96, 7, 8mp2an 410 . . 3 (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
10 eliun 3689 . . . 4 (⟨𝑦, 𝑧⟩ ∈ 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥 ∈ V ⟨𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
11 rexv 2589 . . . 4 (∃𝑥 ∈ V ⟨𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
12 opelxp 4402 . . . . . 6 (⟨𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ (𝑦 ∈ (𝐵 “ {𝑥}) ∧ 𝑧 ∈ (𝐴 “ {𝑥})))
13 vex 2577 . . . . . . . . 9 𝑥 ∈ V
1413, 6elimasn 4720 . . . . . . . 8 (𝑦 ∈ (𝐵 “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
1513, 6opelcnv 4545 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐵)
1614, 15bitri 177 . . . . . . 7 (𝑦 ∈ (𝐵 “ {𝑥}) ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐵)
1713, 7elimasn 4720 . . . . . . 7 (𝑧 ∈ (𝐴 “ {𝑥}) ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐴)
1816, 17anbi12i 441 . . . . . 6 ((𝑦 ∈ (𝐵 “ {𝑥}) ∧ 𝑧 ∈ (𝐴 “ {𝑥})) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
1912, 18bitri 177 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
2019exbii 1512 . . . 4 (∃𝑥𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
2110, 11, 203bitrri 200 . . 3 (∃𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
229, 21bitri 177 . 2 (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
231, 5, 22eqrelriiv 4462 1 (𝐴𝐵) = 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
 Colors of variables: wff set class Syntax hints:   ∧ wa 101   ↔ wb 102   = wceq 1259  ∃wex 1397   ∈ wcel 1409  ∃wrex 2324  Vcvv 2574  {csn 3403  ⟨cop 3406  ∪ ciun 3685   × cxp 4371  ◡ccnv 4372   “ cima 4376   ∘ ccom 4377  Rel wrel 4378 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-iun 3687  df-br 3793  df-opab 3847  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386 This theorem is referenced by:  dfco2a  4849
 Copyright terms: Public domain W3C validator