ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfco2a GIF version

Theorem dfco2a 4871
Description: Generalization of dfco2 4870, where 𝐶 can have any value between dom 𝐴 ∩ ran 𝐵 and V. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfco2a ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝐴𝐵) = 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem dfco2a
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfco2 4870 . 2 (𝐴𝐵) = 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
2 vex 2613 . . . . . . . . . . . . . 14 𝑥 ∈ V
3 vex 2613 . . . . . . . . . . . . . . 15 𝑧 ∈ V
43eliniseg 4745 . . . . . . . . . . . . . 14 (𝑥 ∈ V → (𝑧 ∈ (𝐵 “ {𝑥}) ↔ 𝑧𝐵𝑥))
52, 4ax-mp 7 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐵 “ {𝑥}) ↔ 𝑧𝐵𝑥)
63, 2brelrn 4615 . . . . . . . . . . . . 13 (𝑧𝐵𝑥𝑥 ∈ ran 𝐵)
75, 6sylbi 119 . . . . . . . . . . . 12 (𝑧 ∈ (𝐵 “ {𝑥}) → 𝑥 ∈ ran 𝐵)
8 vex 2613 . . . . . . . . . . . . . 14 𝑤 ∈ V
92, 8elimasn 4742 . . . . . . . . . . . . 13 (𝑤 ∈ (𝐴 “ {𝑥}) ↔ ⟨𝑥, 𝑤⟩ ∈ 𝐴)
102, 8opeldm 4586 . . . . . . . . . . . . 13 (⟨𝑥, 𝑤⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
119, 10sylbi 119 . . . . . . . . . . . 12 (𝑤 ∈ (𝐴 “ {𝑥}) → 𝑥 ∈ dom 𝐴)
127, 11anim12ci 332 . . . . . . . . . . 11 ((𝑧 ∈ (𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥})) → (𝑥 ∈ dom 𝐴𝑥 ∈ ran 𝐵))
1312adantl 271 . . . . . . . . . 10 ((𝑦 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ (𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥}))) → (𝑥 ∈ dom 𝐴𝑥 ∈ ran 𝐵))
1413exlimivv 1819 . . . . . . . . 9 (∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ (𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥}))) → (𝑥 ∈ dom 𝐴𝑥 ∈ ran 𝐵))
15 elxp 4408 . . . . . . . . 9 (𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑧𝑤(𝑦 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ (𝐵 “ {𝑥}) ∧ 𝑤 ∈ (𝐴 “ {𝑥}))))
16 elin 3165 . . . . . . . . 9 (𝑥 ∈ (dom 𝐴 ∩ ran 𝐵) ↔ (𝑥 ∈ dom 𝐴𝑥 ∈ ran 𝐵))
1714, 15, 163imtr4i 199 . . . . . . . 8 (𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) → 𝑥 ∈ (dom 𝐴 ∩ ran 𝐵))
18 ssel 3002 . . . . . . . 8 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑥 ∈ (dom 𝐴 ∩ ran 𝐵) → 𝑥𝐶))
1917, 18syl5 32 . . . . . . 7 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) → 𝑥𝐶))
2019pm4.71rd 386 . . . . . 6 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ (𝑥𝐶𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))))
2120exbidv 1748 . . . . 5 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (∃𝑥 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥(𝑥𝐶𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))))
22 rexv 2626 . . . . 5 (∃𝑥 ∈ V 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
23 df-rex 2359 . . . . 5 (∃𝑥𝐶 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥(𝑥𝐶𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))))
2421, 22, 233bitr4g 221 . . . 4 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (∃𝑥 ∈ V 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥𝐶 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))))
25 eliun 3702 . . . 4 (𝑦 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥 ∈ V 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
26 eliun 3702 . . . 4 (𝑦 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥𝐶 𝑦 ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
2724, 25, 263bitr4g 221 . . 3 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝑦 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ 𝑦 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))))
2827eqrdv 2081 . 2 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) = 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
291, 28syl5eq 2127 1 ((dom 𝐴 ∩ ran 𝐵) ⊆ 𝐶 → (𝐴𝐵) = 𝑥𝐶 ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wex 1422  wcel 1434  wrex 2354  Vcvv 2610  cin 2981  wss 2982  {csn 3416  cop 3419   ciun 3698   class class class wbr 3805   × cxp 4389  ccnv 4390  dom cdm 4391  ran crn 4392  cima 4394  ccom 4395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-sbc 2825  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-iun 3700  df-br 3806  df-opab 3860  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator