Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdif2 GIF version

Theorem dfdif2 2953
 Description: Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
dfdif2 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfdif2
StepHypRef Expression
1 df-dif 2947 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
2 df-rab 2332 . 2 {𝑥𝐴 ∣ ¬ 𝑥𝐵} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
31, 2eqtr4i 2079 1 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   ∧ wa 101   = wceq 1259   ∈ wcel 1409  {cab 2042  {crab 2327   ∖ cdif 2941 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-4 1416  ax-17 1435  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-cleq 2049  df-rab 2332  df-dif 2947 This theorem is referenced by:  difeq1  3082  difeq2  3083  nfdif  3092  difidALT  3320
 Copyright terms: Public domain W3C validator