ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdmf GIF version

Theorem dfdmf 4556
Description: Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
dfdmf.1 𝑥𝐴
dfdmf.2 𝑦𝐴
Assertion
Ref Expression
dfdmf dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem dfdmf
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dm 4383 . 2 dom 𝐴 = {𝑤 ∣ ∃𝑣 𝑤𝐴𝑣}
2 nfcv 2194 . . . . 5 𝑦𝑤
3 dfdmf.2 . . . . 5 𝑦𝐴
4 nfcv 2194 . . . . 5 𝑦𝑣
52, 3, 4nfbr 3836 . . . 4 𝑦 𝑤𝐴𝑣
6 nfv 1437 . . . 4 𝑣 𝑤𝐴𝑦
7 breq2 3796 . . . 4 (𝑣 = 𝑦 → (𝑤𝐴𝑣𝑤𝐴𝑦))
85, 6, 7cbvex 1655 . . 3 (∃𝑣 𝑤𝐴𝑣 ↔ ∃𝑦 𝑤𝐴𝑦)
98abbii 2169 . 2 {𝑤 ∣ ∃𝑣 𝑤𝐴𝑣} = {𝑤 ∣ ∃𝑦 𝑤𝐴𝑦}
10 nfcv 2194 . . . . 5 𝑥𝑤
11 dfdmf.1 . . . . 5 𝑥𝐴
12 nfcv 2194 . . . . 5 𝑥𝑦
1310, 11, 12nfbr 3836 . . . 4 𝑥 𝑤𝐴𝑦
1413nfex 1544 . . 3 𝑥𝑦 𝑤𝐴𝑦
15 nfv 1437 . . 3 𝑤𝑦 𝑥𝐴𝑦
16 breq1 3795 . . . 4 (𝑤 = 𝑥 → (𝑤𝐴𝑦𝑥𝐴𝑦))
1716exbidv 1722 . . 3 (𝑤 = 𝑥 → (∃𝑦 𝑤𝐴𝑦 ↔ ∃𝑦 𝑥𝐴𝑦))
1814, 15, 17cbvab 2176 . 2 {𝑤 ∣ ∃𝑦 𝑤𝐴𝑦} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
191, 9, 183eqtri 2080 1 dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
Colors of variables: wff set class
Syntax hints:   = wceq 1259  wex 1397  {cab 2042  wnfc 2181   class class class wbr 3792  dom cdm 4373
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2950  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-dm 4383
This theorem is referenced by:  dmopab  4574
  Copyright terms: Public domain W3C validator