Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfer2 GIF version

Theorem dfer2 6137
 Description: Alternate definition of equivalence predicate. (Contributed by NM, 3-Jan-1997.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
dfer2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑅
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem dfer2
StepHypRef Expression
1 df-er 6136 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
2 cnvsym 4735 . . . . 5 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
3 cotr 4733 . . . . 5 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
42, 3anbi12i 441 . . . 4 ((𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
5 unss 3144 . . . 4 ((𝑅𝑅 ∧ (𝑅𝑅) ⊆ 𝑅) ↔ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
6 19.28v 1796 . . . . . . . 8 (∀𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
76albii 1375 . . . . . . 7 (∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
8 19.26 1386 . . . . . . 7 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
97, 8bitri 177 . . . . . 6 (∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
109albii 1375 . . . . 5 (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥(∀𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
11 19.26 1386 . . . . 5 (∀𝑥(∀𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
1210, 11bitr2i 178 . . . 4 ((∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
134, 5, 123bitr3i 203 . . 3 ((𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
14133anbi3i 1108 . 2 ((Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅) ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
151, 14bitri 177 1 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   ↔ wb 102   ∧ w3a 896  ∀wal 1257   = wceq 1259   ∪ cun 2942   ⊆ wss 2944   class class class wbr 3791  ◡ccnv 4371  dom cdm 4372   ∘ ccom 4376  Rel wrel 4377   Er wer 6133 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-br 3792  df-opab 3846  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-er 6136 This theorem is referenced by:  iserd  6162
 Copyright terms: Public domain W3C validator