![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dffn2 | GIF version |
Description: Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
dffn2 | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3028 | . . 3 ⊢ ran 𝐹 ⊆ V | |
2 | 1 | biantru 296 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) |
3 | df-f 4956 | . 2 ⊢ (𝐹:𝐴⟶V ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ V)) | |
4 | 2, 3 | bitr4i 185 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 Vcvv 2610 ⊆ wss 2982 ran crn 4392 Fn wfn 4947 ⟶wf 4948 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-v 2612 df-in 2988 df-ss 2995 df-f 4956 |
This theorem is referenced by: f1cnvcnv 5151 fcoconst 5386 fnressn 5401 1stcof 5841 2ndcof 5842 fnmpt2 5879 tposfn 5942 tfrlemibfn 5997 tfr1onlembfn 6013 |
Copyright terms: Public domain | W3C validator |