ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfgcd3 GIF version

Theorem dfgcd3 10624
Description: Alternate definition of the gcd operator. (Contributed by Jim Kingdon, 31-Dec-2021.)
Assertion
Ref Expression
dfgcd3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
Distinct variable groups:   𝑀,𝑑,𝑧   𝑁,𝑑,𝑧

Proof of Theorem dfgcd3
Dummy variables 𝑎 𝑏 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcd0val 10577 . . 3 (0 gcd 0) = 0
2 simprl 498 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝑀 = 0)
3 simprr 499 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝑁 = 0)
42, 3oveq12d 5582 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (0 gcd 0))
5 0nn0 8440 . . . . 5 0 ∈ ℕ0
65a1i 9 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 0 ∈ ℕ0)
7 0dvds 10441 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (0 ∥ 𝑀𝑀 = 0))
87ad2antrr 472 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (0 ∥ 𝑀𝑀 = 0))
92, 8mpbird 165 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 0 ∥ 𝑀)
10 0dvds 10441 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
1110ad2antlr 473 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (0 ∥ 𝑁𝑁 = 0))
123, 11mpbird 165 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → 0 ∥ 𝑁)
139, 12jca 300 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))
1413ad2antrr 472 . . . . . . 7 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))
15 0z 8513 . . . . . . . . 9 0 ∈ ℤ
16 breq1 3808 . . . . . . . . . . 11 (𝑧 = 0 → (𝑧𝑑 ↔ 0 ∥ 𝑑))
17 breq1 3808 . . . . . . . . . . . 12 (𝑧 = 0 → (𝑧𝑀 ↔ 0 ∥ 𝑀))
18 breq1 3808 . . . . . . . . . . . 12 (𝑧 = 0 → (𝑧𝑁 ↔ 0 ∥ 𝑁))
1917, 18anbi12d 457 . . . . . . . . . . 11 (𝑧 = 0 → ((𝑧𝑀𝑧𝑁) ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))
2016, 19bibi12d 233 . . . . . . . . . 10 (𝑧 = 0 → ((𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))))
2120rspcv 2706 . . . . . . . . 9 (0 ∈ ℤ → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))))
2215, 21ax-mp 7 . . . . . . . 8 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) → (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))
2322adantl 271 . . . . . . 7 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (0 ∥ 𝑑 ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))
2414, 23mpbird 165 . . . . . 6 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 0 ∥ 𝑑)
25 simplr 497 . . . . . . . 8 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 ∈ ℕ0)
2625nn0zd 8618 . . . . . . 7 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 ∈ ℤ)
27 0dvds 10441 . . . . . . 7 (𝑑 ∈ ℤ → (0 ∥ 𝑑𝑑 = 0))
2826, 27syl 14 . . . . . 6 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → (0 ∥ 𝑑𝑑 = 0))
2924, 28mpbid 145 . . . . 5 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) → 𝑑 = 0)
30 dvds0 10436 . . . . . . . . 9 (𝑧 ∈ ℤ → 𝑧 ∥ 0)
3130adantl 271 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧 ∥ 0)
32 breq2 3809 . . . . . . . . 9 (𝑑 = 0 → (𝑧𝑑𝑧 ∥ 0))
3332ad2antlr 473 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → (𝑧𝑑𝑧 ∥ 0))
3431, 33mpbird 165 . . . . . . 7 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧𝑑)
352ad3antrrr 476 . . . . . . . . 9 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑀 = 0)
3631, 35breqtrrd 3831 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧𝑀)
373ad3antrrr 476 . . . . . . . . 9 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑁 = 0)
3831, 37breqtrrd 3831 . . . . . . . 8 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → 𝑧𝑁)
3936, 38jca 300 . . . . . . 7 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → (𝑧𝑀𝑧𝑁))
4034, 392thd 173 . . . . . 6 ((((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) ∧ 𝑧 ∈ ℤ) → (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
4140ralrimiva 2439 . . . . 5 (((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) ∧ 𝑑 = 0) → ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
4229, 41impbida 561 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)) ↔ 𝑑 = 0))
436, 42riota5 5545 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) = 0)
441, 4, 433eqtr4a 2141 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
45 bezoutlembi 10619 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑟 ∈ ℕ0 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑟 = ((𝑀 · 𝑎) + (𝑁 · 𝑏))))
46 simpl 107 . . . . . 6 ((∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑟 = ((𝑀 · 𝑎) + (𝑁 · 𝑏))) → ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
4746reximi 2463 . . . . 5 (∃𝑟 ∈ ℕ0 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ∧ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ 𝑟 = ((𝑀 · 𝑎) + (𝑁 · 𝑏))) → ∃𝑟 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
4845, 47syl 14 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑟 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
4948adantr 270 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ∃𝑟 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
50 simplll 500 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑀 ∈ ℤ)
51 simpllr 501 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑁 ∈ ℤ)
52 simprl 498 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑟 ∈ ℕ0)
53 breq1 3808 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝑟𝑧𝑟))
54 breq1 3808 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑤𝑀𝑧𝑀))
55 breq1 3808 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑤𝑁𝑧𝑁))
5654, 55anbi12d 457 . . . . . . . . 9 (𝑤 = 𝑧 → ((𝑤𝑀𝑤𝑁) ↔ (𝑧𝑀𝑧𝑁)))
5753, 56bibi12d 233 . . . . . . . 8 (𝑤 = 𝑧 → ((𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁))))
5857cbvralv 2582 . . . . . . 7 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑧 ∈ ℤ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁)))
5958biimpi 118 . . . . . 6 (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) → ∀𝑧 ∈ ℤ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁)))
6059ad2antll 475 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ∀𝑧 ∈ ℤ (𝑧𝑟 ↔ (𝑧𝑀𝑧𝑁)))
61 simplr 497 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ¬ (𝑀 = 0 ∧ 𝑁 = 0))
6250, 51, 52, 60, 61bezoutlemsup 10623 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → 𝑟 = sup({𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}, ℝ, < ))
63 breq1 3808 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝑑𝑧𝑑))
6463, 56bibi12d 233 . . . . . . . 8 (𝑤 = 𝑧 → ((𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
6564cbvralv 2582 . . . . . . 7 (∀𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
6665a1i 9 . . . . . 6 (𝑑 ∈ ℕ0 → (∀𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
6766riotabiia 5537 . . . . 5 (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁)))
68 simprr 499 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))
6950, 51, 52, 68bezoutlemeu 10621 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → ∃!𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)))
70 breq2 3809 . . . . . . . . . 10 (𝑑 = 𝑟 → (𝑤𝑑𝑤𝑟))
7170bibi1d 231 . . . . . . . . 9 (𝑑 = 𝑟 → ((𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁))))
7271ralbidv 2373 . . . . . . . 8 (𝑑 = 𝑟 → (∀𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁)) ↔ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁))))
7372riota2 5542 . . . . . . 7 ((𝑟 ∈ ℕ0 ∧ ∃!𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) → (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = 𝑟))
7452, 69, 73syl2anc 403 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)) ↔ (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = 𝑟))
7568, 74mpbid 145 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑑 ∈ ℕ0𝑤 ∈ ℤ (𝑤𝑑 ↔ (𝑤𝑀𝑤𝑁))) = 𝑟)
7667, 75syl5eqr 2129 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))) = 𝑟)
77 gcdn0val 10578 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = sup({𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}, ℝ, < ))
7877adantr 270 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑀 gcd 𝑁) = sup({𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}, ℝ, < ))
7962, 76, 783eqtr4rd 2126 . . 3 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑟 ∈ ℕ0 ∧ ∀𝑤 ∈ ℤ (𝑤𝑟 ↔ (𝑤𝑀𝑤𝑁)))) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
8049, 79rexlimddv 2486 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
81 gcdmndc 10565 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0))
82 exmiddc 778 . . 3 (DECID (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0)))
8381, 82syl 14 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0)))
8444, 80, 83mpjaodan 745 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662  DECID wdc 776   = wceq 1285  wcel 1434  wral 2353  wrex 2354  ∃!wreu 2355  {crab 2357   class class class wbr 3805  crio 5519  (class class class)co 5564  supcsup 6490  cr 7112  0cc0 7113   + caddc 7116   · cmul 7118   < clt 7285  0cn0 8425  cz 8502  cdvds 10421   gcd cgcd 10563
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7199  ax-resscn 7200  ax-1cn 7201  ax-1re 7202  ax-icn 7203  ax-addcl 7204  ax-addrcl 7205  ax-mulcl 7206  ax-mulrcl 7207  ax-addcom 7208  ax-mulcom 7209  ax-addass 7210  ax-mulass 7211  ax-distr 7212  ax-i2m1 7213  ax-0lt1 7214  ax-1rid 7215  ax-0id 7216  ax-rnegex 7217  ax-precex 7218  ax-cnre 7219  ax-pre-ltirr 7220  ax-pre-ltwlin 7221  ax-pre-lttrn 7222  ax-pre-apti 7223  ax-pre-ltadd 7224  ax-pre-mulgt0 7225  ax-pre-mulext 7226  ax-arch 7227  ax-caucvg 7228
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-1st 5819  df-2nd 5820  df-recs 5975  df-frec 6061  df-sup 6492  df-pnf 7287  df-mnf 7288  df-xr 7289  df-ltxr 7290  df-le 7291  df-sub 7418  df-neg 7419  df-reap 7812  df-ap 7819  df-div 7898  df-inn 8177  df-2 8235  df-3 8236  df-4 8237  df-n0 8426  df-z 8503  df-uz 8771  df-q 8856  df-rp 8886  df-fz 9176  df-fzo 9300  df-fl 9422  df-mod 9475  df-iseq 9592  df-iexp 9643  df-cj 9948  df-re 9949  df-im 9950  df-rsqrt 10103  df-abs 10104  df-dvds 10422  df-gcd 10564
This theorem is referenced by:  bezout  10625
  Copyright terms: Public domain W3C validator