ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfif3 GIF version

Theorem dfif3 3370
Description: Alternate definition of the conditional operator df-if 3359. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.)
Hypothesis
Ref Expression
dfif3.1 𝐶 = {𝑥𝜑}
Assertion
Ref Expression
dfif3 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶)))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem dfif3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfif6 3360 . 2 if(𝜑, 𝐴, 𝐵) = ({𝑦𝐴𝜑} ∪ {𝑦𝐵 ∣ ¬ 𝜑})
2 dfif3.1 . . . . . 6 𝐶 = {𝑥𝜑}
3 biidd 165 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜑))
43cbvabv 2177 . . . . . 6 {𝑥𝜑} = {𝑦𝜑}
52, 4eqtri 2076 . . . . 5 𝐶 = {𝑦𝜑}
65ineq2i 3162 . . . 4 (𝐴𝐶) = (𝐴 ∩ {𝑦𝜑})
7 dfrab3 3240 . . . 4 {𝑦𝐴𝜑} = (𝐴 ∩ {𝑦𝜑})
86, 7eqtr4i 2079 . . 3 (𝐴𝐶) = {𝑦𝐴𝜑}
9 dfrab3 3240 . . . 4 {𝑦𝐵 ∣ ¬ 𝜑} = (𝐵 ∩ {𝑦 ∣ ¬ 𝜑})
10 notab 3234 . . . . . 6 {𝑦 ∣ ¬ 𝜑} = (V ∖ {𝑦𝜑})
115difeq2i 3086 . . . . . 6 (V ∖ 𝐶) = (V ∖ {𝑦𝜑})
1210, 11eqtr4i 2079 . . . . 5 {𝑦 ∣ ¬ 𝜑} = (V ∖ 𝐶)
1312ineq2i 3162 . . . 4 (𝐵 ∩ {𝑦 ∣ ¬ 𝜑}) = (𝐵 ∩ (V ∖ 𝐶))
149, 13eqtr2i 2077 . . 3 (𝐵 ∩ (V ∖ 𝐶)) = {𝑦𝐵 ∣ ¬ 𝜑}
158, 14uneq12i 3122 . 2 ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ({𝑦𝐴𝜑} ∪ {𝑦𝐵 ∣ ¬ 𝜑})
161, 15eqtr4i 2079 1 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1259  {cab 2042  {crab 2327  Vcvv 2574  cdif 2941  cun 2942  cin 2943  ifcif 3358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rab 2332  df-v 2576  df-dif 2947  df-un 2949  df-in 2951  df-if 3359
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator