![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfima2 | GIF version |
Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dfima2 | ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4405 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
2 | dfrn2 4572 | . 2 ⊢ ran (𝐴 ↾ 𝐵) = {𝑦 ∣ ∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦} | |
3 | vex 2614 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 3 | brres 4667 | . . . . . 6 ⊢ (𝑥(𝐴 ↾ 𝐵)𝑦 ↔ (𝑥𝐴𝑦 ∧ 𝑥 ∈ 𝐵)) |
5 | ancom 262 | . . . . . 6 ⊢ ((𝑥𝐴𝑦 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦)) | |
6 | 4, 5 | bitri 182 | . . . . 5 ⊢ (𝑥(𝐴 ↾ 𝐵)𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦)) |
7 | 6 | exbii 1537 | . . . 4 ⊢ (∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦)) |
8 | df-rex 2359 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 𝑥𝐴𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥𝐴𝑦)) | |
9 | 7, 8 | bitr4i 185 | . . 3 ⊢ (∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦 ↔ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦) |
10 | 9 | abbii 2198 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑥(𝐴 ↾ 𝐵)𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} |
11 | 1, 2, 10 | 3eqtri 2107 | 1 ⊢ (𝐴 “ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑥𝐴𝑦} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1285 ∃wex 1422 ∈ wcel 1434 {cab 2069 ∃wrex 2354 class class class wbr 3806 ran crn 4393 ↾ cres 4394 “ cima 4395 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3917 ax-pow 3969 ax-pr 3993 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2613 df-un 2987 df-in 2989 df-ss 2996 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-br 3807 df-opab 3861 df-xp 4398 df-cnv 4400 df-dm 4402 df-rn 4403 df-res 4404 df-ima 4405 |
This theorem is referenced by: dfima3 4722 elimag 4723 imasng 4741 imadiflem 5030 imadif 5031 imainlem 5032 imain 5033 funimaexglem 5034 dfimafn 5276 isoini 5510 |
Copyright terms: Public domain | W3C validator |