ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfiun3 GIF version

Theorem dfiun3 4639
Description: Alternate definition of indexed union when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfiun3.1 𝐵 ∈ V
Assertion
Ref Expression
dfiun3 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵)

Proof of Theorem dfiun3
StepHypRef Expression
1 dfiun3g 4637 . 2 (∀𝑥𝐴 𝐵 ∈ V → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
2 dfiun3.1 . . 3 𝐵 ∈ V
32a1i 9 . 2 (𝑥𝐴𝐵 ∈ V)
41, 3mprg 2425 1 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1285  wcel 1434  Vcvv 2610   cuni 3621   ciun 3698  cmpt 3859  ran crn 4392
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-cnv 4399  df-dm 4401  df-rn 4402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator