ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfiunv2 GIF version

Theorem dfiunv2 3720
Description: Define double indexed union. (Contributed by FL, 6-Nov-2013.)
Assertion
Ref Expression
dfiunv2 𝑥𝐴 𝑦𝐵 𝐶 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧𝐶}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem dfiunv2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-iun 3686 . . . 4 𝑦𝐵 𝐶 = {𝑤 ∣ ∃𝑦𝐵 𝑤𝐶}
21a1i 9 . . 3 (𝑥𝐴 𝑦𝐵 𝐶 = {𝑤 ∣ ∃𝑦𝐵 𝑤𝐶})
32iuneq2i 3702 . 2 𝑥𝐴 𝑦𝐵 𝐶 = 𝑥𝐴 {𝑤 ∣ ∃𝑦𝐵 𝑤𝐶}
4 df-iun 3686 . 2 𝑥𝐴 {𝑤 ∣ ∃𝑦𝐵 𝑤𝐶} = {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑤 ∣ ∃𝑦𝐵 𝑤𝐶}}
5 vex 2577 . . . . 5 𝑧 ∈ V
6 eleq1 2116 . . . . . 6 (𝑤 = 𝑧 → (𝑤𝐶𝑧𝐶))
76rexbidv 2344 . . . . 5 (𝑤 = 𝑧 → (∃𝑦𝐵 𝑤𝐶 ↔ ∃𝑦𝐵 𝑧𝐶))
85, 7elab 2709 . . . 4 (𝑧 ∈ {𝑤 ∣ ∃𝑦𝐵 𝑤𝐶} ↔ ∃𝑦𝐵 𝑧𝐶)
98rexbii 2348 . . 3 (∃𝑥𝐴 𝑧 ∈ {𝑤 ∣ ∃𝑦𝐵 𝑤𝐶} ↔ ∃𝑥𝐴𝑦𝐵 𝑧𝐶)
109abbii 2169 . 2 {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑤 ∣ ∃𝑦𝐵 𝑤𝐶}} = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧𝐶}
113, 4, 103eqtri 2080 1 𝑥𝐴 𝑦𝐵 𝐶 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧𝐶}
Colors of variables: wff set class
Syntax hints:   = wceq 1259  wcel 1409  {cab 2042  wrex 2324   ciun 3684
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-in 2951  df-ss 2958  df-iun 3686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator