ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnot Structured version   GIF version

Theorem dfnot 1217
Description: One definition of negation in logics that take as axiomatic is via "implies contradiction", i.e. φ → ⊥. (Contributed by Mario Carneiro, 2-Feb-2015.)
Assertion
Ref Expression
dfnot φ ↔ (φ → ⊥ ))

Proof of Theorem dfnot
StepHypRef Expression
1 fal 1207 . 2 ¬ ⊥
2 mtt 592 . 2 (¬ ⊥ → (¬ φ ↔ (φ → ⊥ )))
31, 2ax-mp 7 1 φ ↔ (φ → ⊥ ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 96  wfal 1202
This theorem is referenced by:  inegd  1218  pclem6  1219  alnex  1335  alexim  1480  difin  3059  indifdir  3078
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 97  ax-ia2 98  ax-ia3 99  ax-in1 528  ax-in2 529
This theorem depends on definitions:  df-bi 108  df-tru 1204  df-fal 1205
  Copyright terms: Public domain W3C validator